

Estudos Sobre a Síntese de Heliangolidos pela Reação de Diels-Alder

Volume II

Seção de Espectros

Adilson Beatriz

Ribeirão Preto, SP

2001

UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO DEPARTAMENTO DE QUÍMICA

Estudos Sobre a Síntese de Heliangolidos pela Reação de Diels-Alder

Adilson Beatriz Tese de doutoramento

Orientador: Prof. Dr. Mauricio Gomes Constantino

Ribeirão Preto, SP

2001

8. SEÇÃO DE ESPECTROS

Nesta seção a numeração dos átomos de carbono dos compostos, não segue nenhuma norma ou recomendação oficial. O objetivo desta numeração é facilitar a identificação dos átomos de carbono e hidrogênio nas discussões dos espectros.

A nomenclatura dos compostos segue as regras da IUPAC que possui uma numeração diferente da utilizada nesta seção.

Dada a proximidade dos deslocamentos químicos de RMN ¹³C para átomos de carbono numa mesma molécula, usamos simbolicamente asteriscos com o objetivo de chamar a atenção para a incerteza na atribuição do deslocamento químico, ou seja, átomos de carbono com o mesmo número de asteriscos podem ter os deslocamentos químicos trocados.

Um sinal de apóstrofe no número de hidrogênio de ciclo significa que o referido hidrogênio está no plano alfa do anel.

A numeração das figuras e tabelas desta seção é independente da usada no volume I.

Para a atribuição dos sinais espectrais foram consultadas tabelas e livros textos segundo as referências abaixo:

RMN- ¹ H	Refs.: 92,93 e 94
RMN- ¹³ C	Refs.: 92, 93, 95-97
IV	Refs.: 92 e 93
EM	Refs.: 92, 93 e 98.

rel-(1S,2S,7R,8R)-9,10-Dimetóxi-11-oxatriciclo[6.2.1.0^{2,7}] undeca-4,9-dieno-3,6-diona (60).

. Espectro de RMN ¹H:

Apesar do composto **61** ser obtido puro (comprovado por ponto de fusão, CCD, etc), não foi possível um espectro de RMN do material puro, porque uma reação de retro-Diels-Alder tem início assim que **60** é dissolvido para fazer RMN. Todos os espectros de **60** contém uma certa quantidade de sinais dos compostos **58** e **59**.

A figura **1** mostra o espectro do composto **60**, juntamente com os produtos de reação de retro-Diels-Alder [3,4-DF (**58**) e benzoquinona (**59**)]. O espectro deste composto é relativamente simples, uma vez que se trata de um composto simétrico. H₂/H₇ e H₁/H₈ todos aparecem na forma de multipletos (sistema AA'XX') em δ 3,48 e δ 5,15, respectivamente. O singleto em δ 3,63 é atribuído aos grupos –OCH₃ do composto **60**, enquanto que estes mesmos grupos absorvem em δ 3,76 no 3,4-DF. Os hidrogênios olefínicos aparecem na forma de um singleto em δ 6,63.

Composto 60

Figura **2**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **60**, (a) BB; (b) DEPT 135, \uparrow (CH, CH₃)

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1/8	5,14 (m, 2H)	80,25
2/7	3,46 (m, 2H)	49,43
3/6	-	195,49
4/5	6,64 (s, 2H)	136,53
9/10	-	141,33
11/12	3,63 (s, 6H)	58,42

Tabela **1**: Atribuição dos deslocamentos químicos dos hidrogênios (H) e carbonos (C) do composto **60**.

. Espectro de Infravermelho

Figura **3**: Espectro de IV do composto **60**.

Tabela **2**: Atribuição das bandas de absorção de IV a grupos funcionais do composto **60**.

Vmax	Atribuição
1687	Deformação axial de C=O
1454	Deformação axial da ligação C=C de éter vinílico
1342	Deformação axial assimétrica de C-O-C
1027	Deformação axial simétrica de C-O-C

rel-(1S,3S,7S,2R,6R,8R)-9,10-Dimetóxi-11-oxatriciclo [6.2.1.0^{2,7}] undeca-4,9-dieno-3,6-diol (61).

. Espectro de RMN ¹H

Analisando o espectro de RMN ¹H do composto **61** podemos verificar que o molécula ainda possui simetria e que os sinais dos hidrogênios no espectro estão de acordo com os esperados para a transformação do composto **60** em **61**. O aparecimento de H_3/H_6 (carbinólicos) na forma de um multipleto em δ 4,3 comprova a redução das carbonilas do composto **60**. O deslocamento químico de H₂/H₇ mudou para campo mais alto (δ 2,72) e ocorreu um maior desdobramento do sinal, transformando-se em um multipleto (quando comparado com o sinal dos mesmos hidrogênios no material de partida). O dubleto que aparece em δ 4,8 (J = 4 Hz) foi atribuído para o hidrogênio da hidroxila (-OH), que foi comprovado pela diminuição da sua integral relativa, provocada pela adição de D₂O na mesma amostra que foi utilizada para obter o espectro da figura **4**. O singleto em δ 3,60, integrando para 6 H, pertence aos éteres vinílicos (–OCH₃). O sinal dos hidrogênios da cabeça-deponte (H_1/H_8) aparece, como em **60**, constituído por um sistema AA'XX' em δ 4,60 (veja a expansão).

No espectro de RMN ¹³C encontramos apenas os 6 carbonos esperados para este produto.

Composto 61

Figura **4**: Espectro de RMN ¹H (300 MHz, DMSO-*d*₆) do composto **61**

. Espectro de RMN ¹³C (BB e DEPT 135)

Figura **5**: Espectros de RMN ¹³C (75 MHz, DMSO- d_6) do composto **61**. (a) BB; (b) DEPT 135, \downarrow (CH, CH₃).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	С
1/8	4,59 (m, 2H)	78,58
2/7	2,72 (m, 2H)	43,94
3/6	4,27 (m, 2H)	64,90
4/5	5,32 (s. l., 2H)	130,71
9/10	-	136,07
11/12	3,57 (s, 6H)	57,13

Tabela **3**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **61**.

. Espectro de Infravermelho

Figura 6: Espectro de IV do composto 61.

Tabela	4 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais	do compost	o 61 .							

v_{max}	Atribuição
3383	Deformação axial –OH (ponte de H)
3276	Deformação axial de –OH
2920	Deformação axial de C-H
12240	Deformação axial assimétrica de C-O-C
1158	Deformação axial de C-O

Figura 7: Espectro de massas do composto **61**.

rel-(1S,2S,12S,4R,5R,6R,8R,11R)-5,6-Dimetóxi-3,7-dioxatetraciclo[6.4.0.0^{2,7}.0^{4,12}]dodeca-9-en-11-ol (70).

. Espectro de RMN ¹H

Comparando o espectro deste composto com o espectro do produto anterior (61), podemos observar que 70 não possui simetria como **61**. O sinal de H_{10} aparece como um duplo-tripleto em δ 3,58; este hidrogênio acopla com H₁ (J = 5 Hz) e ainda possui 2 acoplamentos a longa distância com H₂ e H₈, com J \cong 1 Hz. H₈ em δ 4,94 aparece na forma de um duplo-tripleto, com J_{8.7} = 5,7 Hz e 2 acoplamentos a longa distância (J \cong 1Hz). H₂ aparece acoplado com $H_7 \text{ com } J= 10 \text{ Hz}$, além do acoplamento a longa distância com H_{10} (J \approx 1 Hz). H₇ aparentemente não acopla a longa distância e aparece na forma de um tripleto, observando-se valores de $J_{7,6} = 5,7$ Hz e $J_{7,1}$ = 10 Hz. O singleto em δ 3,38 (3 H) foi atribuído à metoxila 12 e outro singleto em δ 3,40 à metoxila 11 do grupo cetal. O hidrogênio da hidroxila aparece na forma de um dubleto em δ 3,42 com J_{OH,3} = 10 Hz). Os sinais de H₁ e H₃ aparecem sobrepostos, mesmo assim foi possível observar e medir as constantes de acoplamento de cada hidrogênio. O sinal de H_1 é um tripleto, enquanto que H_3 se desdobra como duplo duplo-tripleto. Os sinais dos hidrogênios olefínicos estão na região esperada. H₅ apresenta-se na forma de um duplo-dubleto em δ 5,88 e H₄ é um duplo duplo-dubleto em δ 5.94.

. Espectro de RMN ¹³C (BB e DEPT 135)

Figura **9**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **70**. (a) BB; (b) DEPT 135, \downarrow (CH, CH₃).

Tabela	5: Atribuição	dos des	locamentos	químicos	aos	hidrogênios
(H) e car	rbonos (C) do	compost	o 70 .	-		-

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	С (б)
1	4,48 (t, 1H, J≅ 5)	77,44*
2	2,75 (ddt, 1H, $J_1=J_2=10$, $J_3=5$, $J_4\cong 1,2$	38,45
3	4,46 (ddt, 1H, $J_1=J_2=10$, $J_3=3,5$, J_4 1,5)	63,52**
4	5,88 (dd, 1H, J_1 = 10, J_2 = 3,5)	124,63***
5	5,94 (ddd, 1H, J_1 = 10, J_2 = 5, J_3 = 1,5)	134,15***
6	4,55 (dt, 1H, $J_1=J_2=5$, $J_3=1$)	67,35
7	2,65 (dt, 1H, J_1 = 10, J_2 = J_3 = 5,7)	42,30
8	4,94 (dt, 1H, $J_1=5,7, J_2\cong 1, J_3=1$)	85,19*
9	-	109,91
10	$3,58$ (dt, 1H, $J_1=5$, $J_2=1$)	82,94*
11	3,40 (s, 3H)	57,06
12	3,38 (s, 3H)	50,90
-OH	3,42 (d, J= 10)	-

. Espectro de Infravermelho

Figura 10: Espectro de IV do composto 70.

Tabela	6 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais	do compost	o 70 .							

Vmax	Atribuição
3470	Deformação axial de –OH
1073	Deformação axial simétrica de C-O-C
1030	Deformação axial simétrica de C-O-C

. Espectro de Massas

Figura 11: Espectro de massas do composto 70.

rel-(6S,8S,10S,1R,2R,7R,9R)-6-Hidróxi-9,10-dimetóxi-11-oxatriciclo[6.2.1.0^{2,7}] undecano-3-ona (73).

. Espectro de RMN ¹H

Apesar da complexidade estrutural deste composto, quando comparado com o material de partida (**61**), foi possível analisar detalhadamente o espectro de RMN ¹H e atribuir os sinais para cada hidrogênio, através dos deslocamentos químicos e principalmente pelos acoplamentos de cada hidrogênio com a sua vizinhança.

No espectro da figura **12** podemos observar, pelas integrais relativas, os 18 hidrogênios da molécula; cada qual com os padrões de acoplamentos bem definidos (veja expansão do espectro na figura **13**).

 H_1 aparece em δ 5,18 na forma de um tripleto com J = 5 Hz, referentes aos acoplamentos com H_{10} e H_2 . Da mesma forma, os sinais de absorção de H_8 é um tripleto em δ 4,65 com J = 5 Hz, referentes aos acoplamentos com H_9 e H_7 . H_2 , um duplo-dubleto (δ 2,88), absorve em campo mais alto que H_7 (δ 3,07). Os sinais de H_7 aparecem como um duplo duplo-dubleto. H_6 absorve em δ 4,22 (duplo duplo-tripleto), na mesma região observada para os hidrogênios carbinólicos dos álcoois apresentados anteriormente. O singleto em δ 3,48 atribuímos aos hidrogênios da metoxila 11, sendo que o sinal em δ 3,17 foi atribuído aos hidrogênios da metoxila 12. O duplo-dubleto em δ 3,80 foi atribuído a H_9 e o outro em δ 3,13 foi atribuído a $H_{10}.$

Composto 73

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	5,18 (t, 1H, J= 5,0)	76,22*
2	2,88 (dd, 1H, J_1 = 12,0; J_2 = 5,0)	48,99
3	-	206,96
4 (H-β)	2,47 (ddt, 1H, J ₁ =J ₂ = 3,5; J ₃ = 17,5; J ₄ \cong	39,65
	1,0)	
4' (H-	2,18 (ddd, 1H, $J_1=17,5$; $J_2=13,0$; $J_3=5,0$)	39,65
α)		
5 (H-β)	2,72 (ddt, 1H, $J_1=J_2=13,0$; $J_3=12,0$;	28,43
	$J_4=3,5)$	
5' (H-	1,88 (ddt, 1H, $J_1=J_2=5,0$; $J_3=13,0$; $J_4=$	28,43
α)	3,5)	
6	4,22 (ddt, 1H, $J_1=J_2=12,0$; $J_3=9,5$; $J_4=$	68,36
	5,0)	
7	3,07 (ddd, 1H, J_1 = 12,0; J_2 = 9,5; J_3 =	43,14
	5,0)	
8	4,65 (t, 1H, J= 5,0)	78,43*
9	$3,80^*$ (dd, 1H, $J_1=8,5$; $J_2=5,0$)	85,08
10	$3,73^*$ (dd, 1H, J ₁ = 8,5; J ₂ = 5,0)	80,92
11	3,48 (s, 3H)	58,73
12	3,17 (s, 3H)	58,25
-OH	3,43 (d, 1H, J= 12,0)	-

Tabela **7**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **73**.

. Espectro de Infravermelho

Figura 15: Espectro de IV do composto 73.

Tabela	8 :	Atribuição	o das	bandas	de	absorção	de	IV	а	grupos
funcion	ais	do compos	sto 73							-

Vmax	Atribuição
3438	Deformação axial de O-H
2992	Deformação axial de C-H
2929	Deformação axial de C-H
1690	Deformação axial de C=O
1436	Deformação angular de C-H
1095	Deformação axial assimétrica de C-O-C
1055	Deformação axial assimétrica de C-O-C

. Espectro de Massas

Figura **16**: Espectro de massas do composto **73**.

rel-(1S,3S,7S,9S,2R,6R,8R,10R)-9,10-Dimetóxi-11-oxatriciclo [6.2.1.0^{2,7}]undecano-3,6-diol (74).

. Espectro de RMN ¹H

Os espectros de **74** (RMN ¹H e ¹³C) mostram claramente que se trata de uma molécula que possui um plano de simetria e portanto, um composto simétrico. Um dubleto em δ 5,5 foi atribuído aos hidrogênios das hidroxilas. H₁₀/H₉ em δ 3,92 aparecem como um duplo-dubleto, resultado do acoplamento com H₁/H₈ (J = 3,5 Hz) a longa distância com H₂/H₇ (J = 2,0 Hz) (veja expansão no espectro da figura **17**). H₁/H₈ absorvem em δ 4,67 como um duplo duplo-dubleto, mostrando também um acoplamento a longa distância com H₃/H₆ (J = 2,0 Hz). O multipleto em δ 4,14 foi atribuído aos hidrogênios carbinólicos H₃/H₆ e os multipletos em δ 2,00 e δ 1,60 aos hidrogênios metilênicos (-CH₂). H₂/H₇ absorvem em δ 2,57 e os sinais aparecem na forma de duplo duplo-dubleto, onde podemos verificar os acoplamentos vicinais e também o de longa distância com H₁₀/H₉ (J = 2,0 Hz).

Composto 74

. Espectro de RMN ¹³C

Figura **18**: Espectro de RMN ¹³C (75 MHz, CDCl₃) do composto **74**.

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)	
1/8	4,67 (ddd, 2H, $J_1=5,5$; $J_2=3,5$; $J_3=2,0$)	78,24	-
2/7	2,57 (ddd, 2H, J_1 = 5,5; J_2 = 3,0; J_3 =	45,56	
	2,0)		
3/6	4,14 (m, 2H)	64,35	
4/5 (H-β)	2,0 (m, 2H)	28,50	
4'/5' (H-α)	1,60 (m, 2H)	28,50	
9/10	$3,92$ (dd, 2H, $J_1=3,5$; $J_2=2,0$)	81,87	
11/12	3,49 (s, 6H)	59,45	
-OH	5,47 (d, 2H, J = 7)	-	

Tabela **9**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **74**.

. Espectro de Infravermelho

Figura 19: Espectro de IV do composto 74.

Tabela	10 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais d	lo composto	74 .							

Vmax	Atribuição
3383	Deformação axial de O-H
3276	Deformação axial de O-H
2920	Deformação axial de C-H
1427	Deformação angular de C-H
1030	Deformação axial assimétrica de C-O-C

. Espectro de Massas

Figura 20: Espectro de massas do composto 74.

rel-(1S,3S,7S,9S,2R,6R,8R,10R)-9,10-Dimetóxi-11-oxatri - ciclo[6.2.1.0^{2,7}]undecano-3,6-dimesilóxi (64).

. Espectro de RMN ¹H

O espectro de RMN ¹H do composto **75** mostra o singleto referente aos hidrogênios metílicos dos grupos mesilatos, em δ 3,01.

O singleto em δ 3,48 é referente aos hidrogênios das metoxilas 11 e 12. Os sinais dos hidrogênios metilênicos (CH₂) aparecem como multipletos em δ 2,05 e δ 2,81. O sinal de H₃/H₆ deslocou cerca de 1 ppm para campo baixo em relação ao material de partida **74**.

A expansão no espectro mostra os multipletos referentes a H_3/H_6 , H_1/H_8 e H_9/H_{10} . O multipleto em δ 3,14 foi atribuído a H_2/H_7 .

Seção de Espectros

Ciclobut-1-eno-1,2-dicarboxilato de dimetila (80).

. Espectro de RMN 1H.

Os hidrogênios metilênicos (CH2), que são equivalentes, aparecem na forma de um singleto em δ 2,67. O outro singleto, em δ 3,80 é referente aos hidrogênios das metoxilas do diéster.

Figura **22**: Espectro de RMN ¹H (300 MHz, CDCl₃) do composto **80**.

. Espectro de RMN ¹³C (BB e DEPT 135)

Figura **23**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **80**. (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂).

rel-(1S,4R)-Biciclo[2.2.1]hepta-2,5-dieno-carboxilato de metila (87).

. Espectro de RMN ¹H

de RMN $^{1}\mathrm{H}$ do derivado Analisando o espectro de norbornadieno 87, podemos observar com clareza todos os sinais dos hidrogênios. O dubleto em δ 7,66 (J = 3,2 Hz) é referente à absorção de H₃ (H olefínico β-carbonílico). Os outros hidrogênios olefínicos absorvem na região esperada para este tipo de composto (um derivado de norbornadieno). O duplo-dubleto em δ 6,71 foi atribuído para H₅ e outro em δ 6,89 foi atribuído para H₆, que está mais próximo à carbonila do éster. H₈ (-OCH₃) aparece, como esperado, na forma de um singleto em δ 3,71. H4 em δ 3,70 está sobreposto com H₈. H₁ é um multipleto em δ 3,88.

196

Composto 87

Figura **25**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **87**. (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂).

H e C	H e C H: δ [<i>m</i> , Integral relativa, J (Hz)]						
1	3,88 (m, 1H)	51,21*					
2	-	149,35					
3	7,66 (d, 1H, J= 3,2)	155,72					
4	3,70 (m, 1H)	51,45*					
5	6,71 (dd, 1H, J ₁ = 5,8; J ₂ = 3,2)	141,65**					
6	6,89 (dd, 1H, $J_1=5,0$; $J_2=3,2$)	143,56**					
7	2,09-2,12 (m, 2H)	74,24					
7'	2,09-2,12 (m, 2H)	74,24					
8	3,71 (s, 3H)	49,96*					
9	-	165,24					

Tabela **11**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **87**.

Ácido *rel*-(1S,4R)-biciclo[2.2.1]hepta-2,5-dieno-2-carboxílico (100).

. Espectro de RMN ¹H

Comparando o espectro do composto **100** com o espectro do composto **87** (material de partida), podemos observar claramente que a única diferença é a ausência do sinal da metoxila, que foi removida com a saponificação do éster **87**. Todos os outros sinais estão de acordo com a estrutura do ácido **100**. H₃ do ácido absorve em campo mais baixo (δ 7,82) que o mesmo hidrogênio presente no material de partida (δ 7,66).

Figura **27**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **100**. (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	С (б)
1	3,89 (m, 1H)	51,89*
2	-	148,96
3	7,82 (d, 1H, J= 3,0)	159,24
4	3,74 (m, 1H)	49,79*
5	6,73 (dd, 1H, J_1 = 4,7; J_2 = 3,3)	141,56
6	6,92 (dd, 1H, J_1 = 4,7; J_2 = 3,3)	143,82
7	2,13-2,20 (m, 1H)	74,50
7'	2,13-2,20 (m, 1H)	74,50
8	-	-
9	9,80 (s.l., 1H)	169,81

Tabela **12**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **100**.

. Espectro de Infravermelho

Figura 28: Espectro de IV do composto 100.

Tabela	13 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais d	lo composto	100	•						

Vmax	Atribuição
3100-2700	Deformação axial de O-H larga
2996, 2950	Deformação axial C-H, superposta à banda de
	deformação axial de O-H
1670	Deformação axial de C=O
1423	Deformação axial de C-O
1250	Deformação angular de O-H

. Espectro de Massas

Figura 29: Espectro de massas do composto 100.

Ácido *rel*-(1S,2S,3S,4R)-3-Metoxibiciclo[2.2.1]hept-5-eno-2carboxílico (102)

. Espectro de RMN ¹H

A estereoquímica do composto **102** foi deduzida baseada no fato de que o ataque inicial do nucleófilo no carbono β acontece do lado exo, que é mais acessível na molécula do norbornadieno. Uma protonação termodinâmica do enolato resultante segue-se à adição do nucleófilo (MeO- ou MeOH).

Os dados de RMN ¹H suportam a estereoquímica apresentada. H₂ apresenta-se como um duplo-dubleto em δ 2,63. O acoplamento de H₂ com H₁ com J= 3,5 Hz e também um J = 2,0 Hz com H₃, define a sua estereoquímica. H₃, por sua vez, não apresenta acoplamento com H₄ ($\theta \cong 80^{\circ}$), mas apresenta um acoplamento a longa distância com H₇ com J = 1,6 Hz (veja a expansão no espectro da figura **30**). Este acoplamento a longa distância é freqüente em estruturas rígidas deste tipo, apresentando esta estereoquímica. Os deslocamentos químicos e os padrões de acoplamentos dos demais hidrogênios estão totalmente de acordo com a estrutura de **102**. As absorções na região do infravermelho mostram claramente tratar-se de um ácido carboxílico.

Figura **31**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **102**. (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	2,87 (m, 1H)	47,19*
2	2,63 (dd, 1H, $J_1 \cong 2,0$; $J_2 = 3,5$)	43,74*
3	3,55 (dd, 1H, J_1 = 1,6; J_2 2,0)	84,68
4	3,04 (m, 1H)	52,36
5	6,00 (dd, 1H, J ₁ = $6,0$; J ₂ = $3,0$)	137,72**
6	$6,15$ (dd, 1H, $J_1=6,0$; $J_2=3,0$)	134,43**
7	1,57 (dq, 1H, J_1 = 8,5; J_2 = J_3 = J_4 = 1,6)	46,68
7'	1,74 (d, 1H, J= 8,5)	46,68
8	-	-
9	-	179,42
10 (-OMe)	3,32 (s, 3H)	57,23

Tabela **14**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **102**.

. Espectro de Infravermelho

Figura 32: Espectro de IV do composto 102.

Tabela	15 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais c	lo composto) 102	•						

Vmax	Atribuição
3411-3050	Deformação axial de O-H larga
2990 e 2950	Deformação axial de C-H
1705	Deformação axial de C=O do dímero
1227	Deformação axial de C-O

. Espectro de Massas

Figura 33: Espectro de massas do composto 102.

1-(*rel*-(1S,4R)-Biciclo[2.2.1.]hepta-2,5-dien-2il)etano-1-ona (101).

101

. Espectro de RMN ¹H

O espectro da figura **34** mostra os sinais que caracterizam a metilcetona **101**. A hidrogênios metílicos (metila 8) aparecem como δ 2.25. um singleto característico em Comparando **0**S deslocamentos químicos dos hidrogênios deste composto com os do material de partida (ácido 100), podemos observar que H₃ se deslocou cerca de 0,2 ppm para campo mais alto, em relação ao mesmo hidrogênio do composto **100**. Os outros hidrogênios tiveram pouca ou nenhuma mudança, em relação aos deslocamentos químicos; entretanto, H_5 e H_6 apresentaram, cada um, um acoplamento alílico com os hidrogênios da cabeça-de-ponte (H₁ e H₄).

Figura **35**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **101**. (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂).

H e C H: δ [<i>m</i> , Integral relativa, J (Hz)]						
3,98 (m, 1H)	51,75					
-	158,38					
7,62 (d, 1H, J= 3,0)	156,87					
3,74 (m, 1H)	48,48					
6,73 (ddd, 1H, J ₁ = 5,0; J ₂ = 3,1; J ₃ \cong	141,78*					
1,0)						
6,87 (ddd, 1H, J ₁ = 5,0; J ₂ = 3,1; J ₃ \cong	143,75*					
0,5)						
2,08-2,10 (m, 2H)	73,45					
2,08-2,10 (m, 2H)	73,45					
2,25 (s, 3H)	26,28					
-	194,47					
	H: δ [<i>m</i> , Integral relativa, J (Hz)] 3,98 (m, 1H) - 7,62 (d, 1H, J= 3,0) 3,74 (m, 1H) 6,73 (ddd, 1H, J ₁ = 5,0; J ₂ = 3,1; J ₃ \cong 1,0) 6,87 (ddd, 1H, J ₁ = 5,0; J ₂ = 3,1; J ₃ \cong 0,5) 2,08-2,10 (m, 2H) 2,08-2,10 (m, 2H) 2,25 (s, 3H) -					

Tabela **16**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **101**.

. Espectro de Massas

rel-(1S,5S,2R)-2,5-bis(1,1-dimetil-1-silaetoxi)-1,9,9-trimetiltriciclo[4.4.0.0^{2,5}]decano-7-ona (92).

. Espectro de RMN ¹H

A estereoquímica do composto **92** foi deduzida levando em consideração os dados da literatura^{60b} de produtos com estruturas semelhantes a **92**. Além disso, a fusão dos anéis de cicloexano e ciclobutano (6-4), deve possuir a configuração *cis*, por ser a mais estável para este tipo de fusão, pois possui uma menor tensão angular no anel de ciclobutano; quando comparada com a fusão *trans*.

Os dados de RMN (¹H e ¹³C) são totalmente consistentes para a estrutura apresentada. Dois singletos em δ 0,05 e δ 0,1, integrando para 18 hidrogênios, caracterizam a presença dos hidrogênios metílicos pertencentes aos grupos -OTMS (Si(CH₃)₃). O singleto em δ 1,09 foi atribuída para os hidrogênios da metila da fusão dos anéis. Os singletos em δ 0,97 e δ 0,82 foram atribuídas aos hidrogênios das metilas 12 e 13, respectivamente. H₆ absorve em δ 2,43 na forma de um singleto. A maioria dos hidrogênios metilênicos estão sobrepostos uns aos outros, dificultando uma análise mais detalhada. O multipleto sobreposto ao sinal da metila 11 (δ 1,1-1,21) foi atribuído ao hidrogênio H₃⁻ (H- α), que deve ser o mais blindado de todos os hidrogênios metilênicos porque está muito próximo espacialmente da metila 11; conforme podemos verificar na conformação mais estável, calculada para o produto **92** (figura abaixo). O duplo-tripleto em δ 1,88 foi atribuído a H₄ (H- α)

Figura 37: Conformação mais estável para 92 (calculada).

21 Nov 2000 Imported from UXNMR.

Figura **40**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **92**. (a) BB; (b) DEPT 135, \downarrow (CH, CH₃); \uparrow (CH₂).

H e C	H e C H: δ [<i>m</i> , Integral relativa, J (Hz)]						
1	-	45,65					
2	-	82,62*					
3	1,95-2,35	25,84					
3'	1,1-1,21 (m, 1H)	25,84					
4	1,95-2,35	35,29					
4'	1,88 (dt, 1H, $J_1=J_2=12,5$; $J_3=3,0$)	35,29					
5	-	86,19*					
6	2,43 (s, 1H)	60,13					
7	-	211,07					
8	1,95-2,35	54,59					
8'	1,95-2,35	54,59					
9	-	34,01					
10	1,95-2,35	41,43					
10'	1,95-2,35	41,43					
11	1,09 (s, 3H)	32,54**					
12	0,97 (s, 3H)	27,61**					
13	0,82 (s, 3H)	22,25**					
-OTMS	0,05 (s, 9H) e 0,10 (s, 9H)	-0,01 e 1,86					

Tabela **17**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **92**.

rel-(4S,2R) Tetraciclo [3.2.0.02,7.04,6]heptano-6-carboxilato de

. Espectro de RMN ¹H

O duplo duplo-dubleto em δ 2,40 foi atribuído a H₆, que podemos observar os acoplamentos vicinais (J_{6,5} = 2,3 Hz; J_{6,1} = 4,9 Hz) e também um a longa distância com H₃ (J_{6,3} = 1,5 Hz). O sinal de H₁ aparece em δ 2,25 na forma de duplo-tripleto.

Os 2 hidrogênios da ponte aparecem na forma de duplotripleto: H₇ em δ 2,16 e H₇ em δ 2,13. O duplo duplo-dubleto em δ 1,97 foi atribuído a H₃, que acopla com H₄ (J_{3,4} = 6,3 Hz), H₅ (J_{3,5} = 4,9 Hz) e com H₆ (J_{3,6} = 1,5 Hz).

 H_5 e H_4 aparecem em campo mais alto que todos os outros hidrogênios. H_5 é um duplo duplo-dubleto em δ 1,65 e H_4 um duplo duplo-tripleto em δ 1,56.

Seção de Espectros

Figura **42**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **95**. (a) BB; (b) DEPT 135, \downarrow (CH, CH₃); \uparrow (CH₂).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	2,25 (dt, 1H, J_1 = 4,9; J_2 = J_3 = 1,4)	23,13
2	-	27,91
3	1,97 (ddd, 1H, J_1 = 6,3; J_2 = 4,9; J_3 = 1,5)	30,97
4	1,56 (ddt, 1H, J_1 = 6,3; J_2 = 4,9; J_3 =J4= 1,4)	13,63
5	1,65 (ddd, 1H, J_1 = 4,9; J_2 = 4,9; J_3 = 2,3)	15,51
6	2,40 (ddd, 1H, J_1 = 4,9; J_2 = 2,3; J_3 = 1,5)	35,36
7	2,16 (dt, 1H, J_1 = 11,3; J_2 = J_3 = 1,4)	31,77
7'	2,13 (dt, 1H, J_1 = 11,3; J_2 = J_3 = 1,4)	31,77
8	3,65 (s, 3H)	51,33
9	-	173,52

Tabela **18**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **95**.

rel-(3S,4S,1R,2R)-Biciclo[2.2.1]hept-5-eno-2,3-dicarboxilato de dimetila (105).

. Espectro de RMN ¹H

Os espectros de RMN (¹H e ¹³C) deste composto são simplificados devido à simetria que esta molécula apresenta.

Os hidrogênios olefínicos (H₅/H₆) aparecem como um tripleto com linhas pouco definidas em δ 6,23. O singleto referente aos hidrogênios das metoxilas aparece em δ 3,59, integrando para 6 H. Os hidrogênios da cabeça-de-ponte (H₁/H₄) e os que estão α a carbonila do éster (H₂/H₃) aparecem como um multipleto em δ 3,30 e 3,15, respectivamente. H₇ absorve em campo mais baixo que H₇ na forma de um duplo-tripleto em δ 1,45, enquanto que H₇ em δ 1,35 na forma de um dubleto.

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1⁄4	3,30 (m, 2H)	48,66
2/3	3,15 (m, 2H)	46,33
5/6	6,23 (t, 1H, $J_1=J_2=1,7$)	134,93
7	1,35 (d, 1H, J= 8,5)	48,66
7'	1,45 (dt, 1H, J_1 = 8,5; J_2 = J_3 1,7)	48,66
8/11	3,39 (s, 6H)	51,40
9/10	-	172,84

Tabela **19**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **105**.

. Espectro de Infravermelho

Figura 45: Espectro de IV do composto 105.

Tabela	20 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais c	lo composto	105	•						

Vmax	Atribuição
2962	Deformação axial de C-H
1743	Deformação axial de C=O

Figura 46: Espectro de massas do composto 105.

1-[*rel*-(1S,2S,5R,6R)-4-(1,1-Dimetil-1-silaetoxi)triciclo 4.2.1.0^{2,5}] nona-3,7-dien-3-iloxi]-1,1-dimetil-1-silaetano (106).

106

. Espectro de RMN ¹H

O espectro deste composto apresenta sinais referentes ao material de partida (**105**); no entanto, é possível obter este produto na forma mais pura por uma segunda destilação.

O singleto em δ 0,16 integrando para 18 H, foi bastante decisivo na interpretação do espectro. Como esperado, os hidrogênios do grupo –OTMS deveriam absorver próximo ao sinal do TMS e, devido à simetria desta molécula, esperar-se-ía que a absorção referente a estes hidrogênios fosse na forma de um singleto.

Os hidrogênios olefínicos aparecem como um tripleto (J = 1,9 Hz) em δ 5,86. Os hidrogênios da cabeça-de-ponte (H₁/H₄) absorvem em δ 2,56 na forma de multipleto. H₂/H₃ que estão na junção dos anéis absorvem em δ 2,70 como um dubleto com J = 3,2 Hz. H₇ e H₇ (H da ponte) têm um deslocamento em campo mais baixo em relação ao material de partida (**105**). Cada hidrogênio da ponte aparece na forma de um tripleto.

106. (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1⁄4	2,54 (m, 2H)	42,20
2/3	2,70 (d, 1H, J= 3,2)	41,05
5/6	5,86 (t, 2H, $J_1=J_2=1,9$)	131,47
7	1,53 (dt, 1H, J_1 = 8,3; J_2 = J_3 = 1,5)	54,14
7'	1,91 (dt, 1H, J1= 8,3; J ₂ =J ₃ = 1,5)	54,14
8/11	-	-
9/10	-	125,91
-OTMS	0,16 (s, 18H)	0,33

Tabela **21**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **106**.

Acetato de 3-oxociclohex-1-enila (107).

. Espectro de RMN ¹H

Figura **49**: Espectro de RMN ¹H (300 MHz, CDCl₃) do composto **107**.

107. (a) BB; (b) DEPT 135, \downarrow (CH, CH₃); \uparrow (CH₂).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	-	199,20
2	5,89 (s, 1H)	116,83
3	-	166,88
4	2,39 (t, 2H, J= 1,0)	27,78
5	2,05 (qt, 2H, J= 6,2)	20,71
6	2,54 (td, 2H, J_1 = 6,2; J_2 = 1,0)	36,15
7	-	169,53
8	2,22 (s, 3H)	20,72

Tabela **22**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e car<u>bonos (C) do composto **107**.</u>

rel-(1S,2S,7R,8R)-Triciclo[6.2.1.0^{2,7}]undec-9-eno-3,6-diona (131).

. Espectro de RMN ¹H

Este composto possui um plano de simetria, de modo que se trata de uma molécula simétrica; o que podemos constatar pelo número de carbonos que aparecem no espectro de RMN ¹³C da figura **52** (aparecem 6 em vez de 11). Como **131** é conhecido na literatura, discutiremos apenas alguns sinais mais importantes.

Os hidrogênios da ponte (H₁₁ e H₁₁) absorvem perto de δ 1,5, um como dubleto e outro com um duplo-tripleto. Freqüentemente, aquele que absorve em campo mais baixo possui os sinais mais bem definidos e podemos observar com clareza que se trata de um duplo-tripleto. O outro tem menos definição por apresentar os acoplamentos vicinais com J < 1. Logo, somente podemos observar o acoplamento geminal (com J_{gem} sempre em torno de 8 Hz). O dubleto em δ 1,38 (ver expansão) foi atribuído ao H₁₁ e o duplotripleto em δ 1,49 ao H₁₁.

 H_1/H_8 , na forma de multipleto, absorvem em δ 3,45, enquanto que os hidrogênios da fusão *cis* dos 2 anéis em δ 3,25. O tripleto em δ 6,19 foi atribuído aos hidrogênios olefínicos.

Composto 131

Figura **52**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do compostos **131.** (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1/8	3,45 (m, 2H)	51,56
2/7	3,25 (s.l., 2H)	47,13
3/6	-	209,25
4/5	2,65 (m, 2H)	37,65
4'/5'	2,31 (m, 2H)	37,65
9/10	6,19 (t, 2H, J= 2,0)	136,35
11	1,38 (d, 1H, J= 8,7)	48,43
11'	1,49 (dt, 1H, J_1 = 8,7; J_2 = J_3 = 1,7)	48,43

Tabela **23**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **131**.

rel-(1S,2S,6S,7R,8R)-6-Hidroxitriciclo[6.2.1.0^{2,7}]undec-9-en-3ona (132).

. Espectro de RMN 1H

O aparecimento de um multipleto em δ 4,33 integrando para 1 Η no espectro deste composto, comprova decisivamente а transformação $131 \rightarrow 132$.

Os hidrogênios da cabeça-de-ponte (H_1/H_8) apresentam os sinais de absorção com os mesmos padrões de acoplamentos do material de partida. H₁₁ é um dubleto em δ 1,32 e H₁₁, um tripleto em δ 1,45. Um sinal largo em δ 2,35 foi atribuído ao hidrogênio do álcool. O hidrogênio carbinólico (H₆) absorve em δ 4,33, como dito anteriormente.

Os 2 hidrogênios da cabeça-de-ponte absorvem em δ 3,30 (H₁ deve sofrer um maior efeito de desblindagem da carbonila do que H₈) e δ 3,12 (H₈), todos na forma de multipletos.

Finalmente, os sinais de absorção de H₉ e H₁₀ estão próximos, e apresentam-se na forma de duplo-dubletos, ver tabela 24.

240

Composto 132

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	3,30 (m, 1H)	45,85
2	2,82-2,95 (m, 2H)	49,89
3	-	213,12
4	1,76-1,96 (m, 2H)	35,77
4'	2,11-2,31 (m, 2H)	35,77
5	2,11-2,31 (m, 2H)	21,73
5'	1,76-1,96 (m, 2H)	21,73
6	4,33 (m, 1H)	67,48
7	2,82-2,95 (m, 2H)	45,56
8	3,12 (m, 1H)	45,04
9	6,17 (dd, 1H, J ₁ = 5,6; J ₂ = 2,8)	134,96
10	6,24 (dd, 1H, J ₁ = 5,6; J ₂ = 3,1)	136,67
11	1,32 (d, 1H, J= 8,4)	49,89
11'	1,45 (dt, 1H, J_1 = 8,4; J_2 = J_3 = 1,9)	49,89
-OH	2,35 (s. l., 1H)	-

Tabela **24**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **132**.

rel-(2S,7S,8S,1R,3R,5R)-Tetraciclo[6.2.1.0^{2,7}.0^{3,5}]undec-9-en-6ona (136).

. Espectro de RMN ¹H

Este composto apresenta um anel de ciclopropano em sua estrutura, de modo que o seus espectros de RMN (¹H e ¹³C) devem apresentar sinais característicos referentes a este sistema.

H₅, por estar no lado mais impedido estericamente da molécula (endo) deve ser o hidrogênio metilênico mais blindado de todos, por isso o triplo-dubleto em δ 0,64 foi atribuído a este hidrogênio. Podemos "ver" os acoplamentos geminal (J_{gem} = 10 Hz) e vicinais ($J_{5'4} = 10$ Hz; $J_{5',6} = 5$ Hz). H₅ absorve em δ 1,80 (sobreposto ao sinal de H₆), com uma diferença de 1,2 ppm para campo mais baixo que H_{5'}. O duplo-dubleto em δ 3,12 foi atribuído a H₂, que acopla com H₇ com J= 11 Hz, e com H₁ (J = 4,0 Hz). O padrão de acoplamento de H₁ é semelhante a H₈ (hidrogênios da cabeça-deponte) que apresentam-se na forma de multipletos ou como um singleto largo, e este tem sido freqüentemente observado para este tipo de estrutura, como podemos observar nos espectros anteriores e veremos ainda nas estruturas que se seguem. Logo, o multipleto em δ 3,04 foi atribuído a H₁ e em δ 2,94 foi atribuído a H₈. Por eliminação, o multipleto em δ 3,30 deve pertencer a H₇. Este hidrogênio deve sofrer um desblindamento causado, provavelmente, pelo ciclopropano e pela carbonila da cetona, como um sistema todo conjugado.

Os hidrogênios da ponte aparecem, cada um, na forma de duplo-tripleto. Os sinais de absorção de H₉ e H₁₀ aparecem na forma de duplo-dubletos em δ 6,12 e 6,23, respectivamente.

Composto 136

Figura **56**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **136.** (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	С (б)
1	3,04 (m, 1H)	43,44
2	3,12 (dd, 1H, J1= 11,0; J2= 4,0)	58,43
3	-	214,29
4	1,95 (dt, 1H, J1= 5,0; J2= J3= 4,0)	31,99
5	1,76-1,86 (m, 2H)	6,84
5'	0,64 (td, 1H, J1=J2= 10; J3= 5,0)	6,84
6	1,76-1,86 (m, 2H)	21,03
7	3,30 (m, 1H)	46,77
8	2,94 (m, 1H)	41,31
9	6,12 (dd, 1H, J1= 5,8; J2= 3,1)	136,10
10	6,23 (dd, 1H, J1= 5,8; J2= 3,2)	137,62
11	1,47 (dt, 1H, J1= 8,0; J2=J3= 1,5)	55,87
11'	1,56 (dt, J1= 8,0; J2=J3= 1,8)	55,87

Tabela **25**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **136**.

rel-(1S,2S,8R) (134a) e *rel*-(1S,2R,8R)-Triciclo[6.2.1.0^{2,7}]undeca-6,9-dien-3-ona (134b).

. Espectro de RMN 1H

O espectro de RMN ¹H da figura **57** é referente à mistura dos estereoisômeros **134a** e **134b**. Mesmo assim foi possível identificar alguns sinais principais de cada isômero. O sinal de H₂ de **134a** foi decisivo para a distinção entre os isômeros. Como é esperado, H₂ deve absorver em campo mais baixo do que o mesmo hidrogênio de **134b** (que está no lado côncavo da molécula). O dubleto em δ 3,10 foi atribuído a H₂ de **134a**; um acoplamento vicinal com J = 3,0 Hz e outro alílico, também com J = 3 Hz define totalmente a estereoquímica relativa de H₂. Em δ 5,75 está o sinal de absorção de H₆ (**134a**) e podemos encontrar o acoplamento alílico de 3 Hz com H₂.

Analisando detalhadamente os valores das integrais relativas na região das olefinas e relacionando-os com a integral relativa de H₂, podemos concluir que os sinais que possuem uma integral relativa menor que 1 são referentes ao isômero **134b** e os que estão um pouco acima de 1, são referentes ao outro isômero.

Não foi possível encontrar o sinal referente a H₂ de **134b**, pois deve estar sobreposto aos sinais dos hidrogênios metilênicos dos 2 isômeros na região de δ 2,1-2,6, no espectro.

Compostos 134a e 134b

. Espectro de Infravermelho

Figura 59: Espectro de IV da mistura de 134a e 134b.

Tabela	26 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais	da mistura d	dos co	ompostos	5 13	4a e 134b	•			

Vmax	Atribuição
2992	Deformação axial de C-H
2917	Deformação axial de C-H
2872	Deformação axial de C-H
1717	Deformação axial de C=O
1421	Deformação angular simétrica de CH ₂

. Espectro de Massas

Figura 60: Espectro de massas dos compostos 134a e 134b.

rel-(1S,8R)-Triciclo[6.2.1.0^{2,7}]undeca-2(7),9-dien-3-ona (128).

. Espectro de RMN ¹H

O derivado de norbornadieno **128** apresenta um espectro de RMN ¹H relativamente simples. Podemos observar que os sinais dos hidrogênios da parte bicíclica (com ponte) estão quase todos separados um do outro; apenas os da ponte estão sobrepostos aos metilênicos (CH₂), mas mesmo assim pudemos medir as constantes de acoplamento que estes hidrogênios apresentam.

Os hidrogênios da ponte absorvem em torno de δ 2, bem característico para um derivado de norbornadieno que possui uma ligação dupla de cada lado do anel. O padrão de acoplamento para ambos os hidrogênios da ponte (H₁₁) são idênticos e cada um se desdobra na forma de duplo-tripleto.

O duplo-tripleto que aparece em δ 2,67 foi atribuído a H₄; que possui um acoplamento geminal de J = 19 Hz, dois vicinais: equatorial-axial com J_{4,5} = 5,6 Hz e outro equatorial-equatorial com J_{4,5'} = 5,6 Hz também. Os hidrogênios da cabeça-de-ponte (H₁ e H₈) absorvem na região esperado para este tipo de estrutura. H₁ em δ 3,95 (mais perto da carbonila) e H₈ em δ 3,53, todos na forma de multipleto. Os demais hidrogênios estão sobrepostos uns aos outros.

Composto 128

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	3,95 (m, 1H)	46,42
2	-	148,04
3	-	194,42
4	2,67 (dt, 1H, J_1 = 19,0; J_2 = J_3 = 5,6)	37,40
4'	2,34 (dt, 1H, J_1 = 19,0; J_2 = J_3 = 5,5)	37,40
5	1,98 (m, 1H)	23,56
5'	2,00 (m, 1H)	23,56
6	2,20 (ddd, 1H, J_1 = 17; J_2 = 10; J_3 = 5,0)	27,02
6'	2,38 (ddd, 1H, J_1 = 17; J_2 = 7,5; J_3 = 5,0)	27,02
7	-	180,77
8	3,53 (m, 1H)	54,74
9	6,71 (dd, 1H, J_1 = 5,0; J_2 = 3,1)	144,21*
10	6,84 (dd, 1H, J_1 = 5,0; J_2 = 3,1)	140,44*
11	2,05 (dt, 1H, J1= 6,6; J ₂ =J ₃ = 1,6)	71,53
11'	2,11 (dt, 1H, J_1 = 6,6; J_2 = J_3 = 1,6)	71,53

Tabela **27**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **128**.

. Espectro de Infravermelho

Figura 63: Espectro de IV do composto 128.

funcionais do	composto 128.
Vmax	Atribuição
2932	Deformação axial de C-H
2857	Deformação axial de C-H
1658	Deformação axial de C=O
1608	Deformação axial de C=C
1375	Deformação angular de CH ₂
1291	Deformação angular de CH2

Tabela **28**: Atribuição das bandas de absorção de IV a grupos funcionais do composto **128**.

. Espectro de Massas

Figura 64: Espectro de massas do composto 128.

r*el*-(1S,2S,6S,7R,8R)-6-Clorotriciclo[6.2.1.0^{2,7}]undec-9-en-3-ona (137).

. Espectro de RMN ¹H

O par de duplo-dubletos em δ 6,10 e δ 6,23 foi atribuído aos hidrogênios olefínicos: H₉ e H₁₀, respectivamente. H₁ e H₈ absorvem na forma de multipletos em δ 3,31, e 3,16, respectivamente.

 H_6 aparece como um duplo duplo-dubleto em δ 3,38, contendo 2 acoplamentos axial-axial (10 e 11 Hz) e um axial-equatorial (4 Hz). Um duplo-dubleto em δ 2,86 foi atribuído a H₂, cujo acoplamento com H₁ (J_{2,1} = 3 Hz) e outro com H₇ (J_{cis-1,7} = 11 Hz) define totalmente a sua estereoquímica relativa.

Os sinais de absorção dos hidrogênios da ponte estão de acordo com o esperado. Um deles aparece em δ 1,32 na forma de um dubleto (J_{gem} = 9 Hz); o outro é um duplo-tripleto em δ 1,51. Os sinais de alguns hidrogênios metilênicos (CH₂) aparecem sobrepostos na região de δ 2,11-2,25.

Seção de Espectros

Composto 137

137. (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂)

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	3,31 (m, 1H)	45,59
2	2,85 (dd, 1H, $J_1 = 11$; $J_2 = 3,0$)	53,41
3	-	211,72
4	2,91 (ddd, 1H, J_1 = 16; J_2 = 11; J_3 = 3,4)	38,54
4'	2,47 (m, 1H)	38,54
5	2,00-2,25 (m, 3H)	32,41
5'	2,00-2,25 (m, 3H)	32,41
6	3,38 (ddd, 1H, J_1 = 11; J_2 =10; J_2 = 4,0)	60,50
7	2,00-2,25 (m, 1H)	50,80
8	3,16 (m, 1H)	44,85
9	6,10 (dd, 1H, J_1 = 5,8; J_2 = 2,0)	134,48
10	6,23 (dd, 1H, J_1 = 5,8; J_2 = 2,0)	138,71
11	$1,51^*$ (dt, 1H, J ₁ =9,0; J ₂ =J ₃ = 2,0)	47,78
11'	1,32* (d, 1H, J= 9,0)	47,78

Tabela **29**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **137**.

. Espectro de Infravermelho

Figura 67: Espectro de IV do composto 137.

funcionais do composto 137 .			
v_{max}	Atribuição		
2977	Deformação axial de C-H		
2872	Deformação axial de C-H		
1705	Deformação axial de C=O		
1460	Deformação angular assimétrica fora do plano de		
	C II (metilene)		

Tabela **30**: Atribuição das bandas de absorção de IV a grupos funcionais do composto **137**.

	C-II (Inetheno)
730	Deformação angular assimétrica no plano de C-H
	(metileno)
568	Deformação axial da ligação C-Cl

. Espectro de Massas

Figura **68**: Espectro de massas do composto **137**.

rel-(1S,2S,7S,8R)-7-Metoxitriciclo[6.2.1.0^{2,7}]undec-9-en-3-ona (138).

. Espectro de RMN ¹H

Este composto se caracteriza pela presença do sinal da metoxila em δ 3,26. O deslocamento químico de H₂ (δ 2,54) e o acoplamento com H₁ com J_{2,1}= 3,9 Hz suportam que a fusão dos anéis é *cis-endo*.

Todos os principais sinais que aparecem no espectro deste composto suportam a estrutura apresentada para **138**.

 H_9 e H_{10} absorvem como duplo-dubletos em δ 5,93 e δ 6,25, respectivamente.

 H_1 e H_8 são multipletos em δ 3,21 e δ 3,07, respectivamente. $H_{6^{\circ}}$ aparece em campo alto em δ 0,95, comprovando a configuração *endo* deste composto.

Composto 138

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	3,21 (m, 1H)	47,25
2	2,54 (d, 1H, J= 3,9)	49,29
3	-	213,92
4	2,23* (m, 1H)	38,87
4'	2,39* (m, 1H)	38,87
5	1,95-2,11** (m, 2H)	18,08
5'	1,66** (m, 1H)	18,08
6	1,95-2,11** (m, 2H)	28,01
6'	0,95 (m, 1H)	28,01
7	-	87,10
8	3,07 (dd, 1H, J_1 = 3,5; J_2 = 1,7)	43,46
9	5,93 (dd, 1H, J ₁ = 5,6; J ₂ = 3,5)	134,09
10	$6,25$ (dd, 1H, $J_1=5,6$; $J_2=2,7$)	139,87
11	$1,52^{***}$ (dt, 1H, J ₁ = 8,0; J ₂ =J ₃ = 1,7)	45,37
11'	1,84*** (d, 1H, J= 8,0)	45,37
-OMe	3,26 (s, 3H)	62,53

Tabela **31**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **138**.

rel-(1S,2S,7S,8R)-7-Hidroxitriciclo[6.2.1.0^{2,7}]undec-9-en-3-ona (116a).

. Espectro de RMN ¹H

A estereoquímica relativa apresentada para **116a** é suportada pelo sinal de H₂ em δ 2,50 acoplando com H₁ (J_{vic} = 4 Hz). Quando este mesmo hidrogênio possui uma posição contrária (H- α) o ângulo diedro entre H₂ e H₁ é perto de 90° e J_{vic} = 0.

Todos os outros sinais são bem característicos para este tipo de estrutura: o par de duplo-dubletos em δ 5,96 e δ 6,12 pertence aos hidrogênios olefínicos. Os multipletos em δ 3,15 e δ 2,68 pertencem aos hidrogênios da cabeça-de-ponte (H₁ e H₈, respectivamente). H₆⁻ aparece na forma de triplo dubleto em δ 1,21; que sofre um efeito de blindagem pelo alto congestionamento estérico em seu redor (está no lado côncavo da molécula).

Composto 116a
. Espectro de RMN ¹³C (BB e DEPT 135)

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	3,15 (m, 1H)	54,12
2	2,50 (d, 1H, J= 4,0)	61,57
3	-	214,57
4	2,35 (ddt, 1H, J_1 = 18; J_2 = 6,0; J_3 = J_4 = 1,6)	38,89
4'	1,90 (td, 1H, $J_1=J_2=$ 18; $J_3=$ 7,0)	38,89
5	2,15 (m, 1H)	18,19
5'	1,65 (m, 1H)	18,19
6	1,80-1,97 (m, 1H)	35,75
6'	1,21 (td, 1H, $J_1=J_2=13,5$; $J_3=3,0$)	35,75
7	-	81,63
8	2,68 (ddd, 1H, J_1 = 3,5; J_2 =1,5; J_3 = 0,5)	43,82
9	5,96 (dd, 1H, $J_1 = 5,5$; $J_2 = 3,5$)	134,91
10	6,12 (dd, 1H, $J_1 = 5,5$; $J_2 = 2,7$)	138,27
11	1,89 (d, 1H, J= 8,5)	45,78
11'	1,51 (dt, 1H, $J_1 = 8,5$; $J_2 = J_3 = 1,5$)	45,78
-OH	2,85 (s. l., 1H)	-

Tabela **32**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **116a**.

. Espectro de Infravermelho

Figura 73: Espectro de IV do composto 116a.

Tabela	33 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais d	lo composto	116	a.						

Vmax	Atribuição
3441	Deformação axial de O-H
2962	Deformação axial de C-H
2887	Deformação axial de C-H
1692	Deformação axial de C=O

. Espectro de Massas

Figura 74: Espectro de massas do composto 116a.

Tabela 34 : Experimento de NOE	, para o composto 116a .
Irradiação em:	Efeito (%), distância (Å)ª
H2	H ₁ (2%), 2,53
	H ₁₁ [,] (3,5%), 2,63

Tabela 34 : Experimento de No	DE para o composto 116a .
--------------------------------------	----------------------------------

^dDistância ente os átomos no espaço (calculada no programa PC Model).

rel-(1S,7S,2R,8R)-7-Hidroxitriciclo [6.2.1.0^{2,7}]undec-9-en-3-ona (116b).

. Espectro de RMN ¹H

Novamente, H₂ foi decisivo para a determinação da estereoquímica relativa deste composto.

O dubleto em δ 1,89 com J = 3 Hz foi atribuído a H₂. Não há acoplamento com H₁, porque o ângulo diedro entre estes hidrogênios é próximo de 90° (calculado para a conformação mais estável de **116b**).

 $\theta \approx 90^{\circ}$; $J_{2,11} = 3$ Hz; $J_{2,1} = 0$

Por outro lado, H_2 acopla a longa distância com H_{11} com J = 3 Hz.

Adicionalmente, experimentos de NOE comprovam a estereoquímica relativa deste composto, veja a tabela **37**.

Seção de Espectros

Composto 116b

. Espectro de RMN ¹³C (BB e DEPT 135)

Figura **76**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **116b**. (a) BB; (b) DEPT 135, \uparrow (CH, CH₃); \downarrow (CH₂).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	3,40 (m, 1H)	53,04
2	1,01 (d, 1H, J = $3,0$)	61,69
3	-	213,54
4	2,55 (m, 1H)	38,69
4'	2,30 (m, 1H)	38,69
5	2,28 (m, 1H)	18,38
5'	1,90 (m, 1H)	18,38
6	2,12 (m 1H0	35,79
6'	1,50 (m, 1H)	35,79
7	-	82,00
8	2,76 (m, 1H)	45,20
9	6,27 (dd, 1H, J1= 5,0; J2= 3,0)	134,18
10	6,49 (dd, 1H, J1= 5,0; J2= 3,2)	139,27
11	1,56 (ddt, 1H, J1= 9,5; J2= 3,0; J3=J4=	48,33
	1,6)	
11'	1,32 (d, 1H, J= 9,5)	48,33
-OH	1,55 (s. l., 1H)	-

Tabela **35**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **116b**.

. Espectro de Infravermelho

Figura 77: Espectro de IV do composto 116b.

Tabela	36 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais c	lo composto	116	b .						

v_{max}	Atribuição
3456	Deformação axial de O-H
2947	Deformação axial de C-H
2887	Deformação axial de C-H
1692	Deformação axial de C=O

Figura 78: Espectro de massas do composto 116b.

Tabela 37	: Experimento	de NOE para	o composto	116b.
-----------	---------------	-------------	------------	-------

Irradiação em:	Efeito (%), distância (Å)ª
H ₂	H ₁ (4%), 2,77
	H ₁₀ (1%), 2,87
— · · · · ·	

^a Distância ente os átomos no espaço (calculada no programa PC Model).

rel-(1R,8R)-Biciclo[6.2.1]undec-9-ene-2,6-diona (117).

. Espectro de RMN ¹H

Analisando os sinais dos hidrogênios olefínicos e os da cabeça-de-ponte, podemos claramente verificar que os padrões de acoplamentos mudaram em relação às estruturas rígidas que vimos anteriormente.

H₉ e H₁₀ se desdobram, cada um, na forma de um duplotripleto. Para H₉ (δ 6,06) o valor de J para o acoplamento com H₁₀ é de 5 Hz; um acoplamento alílico com H₁ (J \approx 2 Hz) também podemos observar; além do acoplamento com H₈ com cerca de 2 Hz. H₁₀ (δ 5,90) apresenta o mesmo padrão de acoplamento de H₉ (ver expansão no espectro da figura **79**).

 $H_8 \text{ em } \delta$ 3,39 é o hidrogênio alquílico mais desblindado. Além de ser terciário, também possui 2 sistemas eletrocaptores (uma dupla e uma carbonila) nas adjacências. Podemos ver na expansão do sinal, uma constante de acoplamento (J) de 11,5 Hz e outra de 3 Hz que são referentes aos acoplamentos com os hidrogênios da ponte. Outros dois J referem-se aos acoplamentos com H₉ e a longa distância com H₁₀ (observe que não foi possível medir com exatidão as constantes de acoplamento (J) porque as linhas não estão bem definidas neste espectro. H_1 , em δ 3,16, como esperado aparece como um multipleto, devido aos vários acoplamentos existentes.

Os sinais de absorção dos hidrogênios metilênicos estão sobrepostos, dificultando uma análise mais detalhada. O espectro de HMQC, que correlaciona C-H, não foi muito elucidativo em relação aos hidrogênios -CH₂ que estão em α às carbonilas e também com relação aos hidrogênios da ponte. Mas, foi bastante decisivo na correlação com os carbonos da olefina e da cabeça-deponte, além também de correlacionar claramente C₅-H₅ (-CH₂).

. Espectro de RMN ¹³C (BB e DEPT 135)

O espectro de RMN ¹³C mostram 2 carbonilas absorvendo numa região características para cetonas. Uma simulação deste espectro nos sugere que C₇ (δ 218,35) absorve em campo mais baixo que C₃ (δ 211,86). Na figura **83** mostramos um espectro simulado para o composto **117**, realizado em um programa de computador. Observe que o aspecto geral (feição) do espectro simulado se assemelha com o espectro real de RMN ¹³C da figura **80**.

Composto 117

. Espectro de RMN ¹³C (BB e DEPT 135)

Figura 81: Espectro 2D (HMQC; C/H)do composto 117.

Figura 82: Espectro 2D (HMQC; C/H) expandido do composto 117.

Figura **83**: Espectro simulado de RMN ¹³C para o composto **117**. Obs: a numeração dos carbonos neste espectro não corresponde ao que estamos utilizando normalmente.

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	3,16 (m, 1H)	42,21
2/2'	2,43-2,70 (m, 6H)	48,28
3	-	211,85
4/4'	2,10-2,70 (m, 8H)	36,90
5/5'	1,85-2,00 (m, 2H)	21,16
6/6'	2,43-2,70 (m, 6H)	33,07
7	-	218,33
8	3,39 (dtd, 1H, J_1 = 11,5; J_2 = J_3 = 3,0; J_4 = 2,0)	58,27
9	6,06 (dt, 1H, J_1 = 5,0; J_2 = J_3 = 2,0)	137,48
10	5,90 (dt, 1H, J_1 = 5,0; J_2 = J_3 = 2,0)	130,81
11/11'	2,10-2,70 (m, 8H)	40,68

Tabela **38**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **117**.

. Espectro de Infravermelho

Figura 84: Espectro de IV do composto 117.

runcionais uo	
Vmax	Atribuição
2942	Deformação axial de C-H
1697	Deformação axial de C=O larga
1438	Deformação angular assimétrica fora do plano de
	C-H (metileno)
758	Deformação angular assimétrica no plano de C-H
	(metileno)

Tabela **39**: Atribuição das bandas de absorção de IV a grupos funcionais do composto **117**.

. Espectro de Massas

Figura 85: Espectro de massas do composto 117.

rel-(1S,2S,7S,8R)-7-Nitrotriciclo[6.2.1.0.2,7]undec-9-en-3-ona (127a).

. Espectro de RMN ¹H

 H_2 , que aparece em δ 3,87, está fortemente desblindado pelo efeito do grupo vizinho –NO₂. O acoplamento com H_1 (J = 4 Hz) define a sua estereoquímica relativa.

A absorção de $H_{11'}$ em campo alto (δ 1,35) indica que o grupo nitro está do mesmo lado deste hidrogênio, ou seja, o grupo nitro está blindando $H_{11'}$ e a partir desta interpretação podemos sugerir a estereoquímica relativa do grupo nitro na molécula.

Por outro lado, H_8 absorve em δ 3,58 e H_1 em δ 3,35. H_8 absorveu em campo mais baixo que H_1 porque sofre um efeito de desblindagem do grupo nitro.

Tipicamente $H_{6'}$ absorve em campo alto (δ 1,35, sobreposto ao sinal de $H_{11'}$) devido a sua posição do lado côncavo da molécula, que possui um alto congestionamento estérico.

Adicionalmente, experimentos de NOE comprovam a configuração *cis-endo* do composto **127a** (tabela **42**).

Composto 127a

. Espectro de RMN ¹³C (BB e DEPT 135)

Figura **87**: Espectros de RMN ¹³C (75 MHz, CDCl₃) do composto **127a**. (a) BB; (b) DEPT 135, \downarrow (CH, CH₃); \uparrow (CH₂).

H e C	H: δ [<i>m</i> , Integral relativa, J (Hz)]	C (δ)
1	3,35 (m, 1H)	52,82
2	3,87 (d, 1H, J = 4,0)	55,69
3	-	209,79
4	2,41 (dddd, 1H, J1= 18; J2= 5,5; J3= 3,2;	37,71
	J4= 1,5)	
4'	2,00 (dt, 1H, J1= 18; J2=J3= 9,0)	37,71
5	1,76 (m, 1H)	18,68
5'	1,77 (m, 1H)	18,68
6	2,55 (m, 1H)	33,87
6'	1,34 (dt, 1H, J1= 15; J2= 11,6; J3= 5,2)	33,87
7	-	101,17
8	3,58 (m, 1H)	44,77
9	6,06 (dd, 1H, J1= 5,6; J2= 2,8)	141,44
10	6,33 (dd, 1H, J1= 5,6; J2= 3,5)	132,90
11	1,57 (dt, 1H, J1= 9,6; J2=J3= 2,3)	45,94
11'	1,35 (d, 1H, J= 9,6)	45,94

Tabela **40**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **127a**.

Figura 88: Espectro de IV do composto 127a.

Tabela	41 :	Atribuição	das	bandas	de	absorção	de	IV	а	grupos
funcion	ais c	lo composto	127	a.						

Vmax	Atribuição
2963	Deformação axial de C-H
2827	Deformação axial de C-H
1701	Deformação axial de C=O larga
1535	Deformação axial de N=O
1459	Deformação angular assimétrica fora do plano de
	C-H (metileno)
738	Deformação angular assimétrica no plano de C-H
	(metileno)

. Espectro de Massas

Figura 89: Espectro de massas do composto 127a.

Tabela 42 : E	xperimento de NOE para o composto 127a .
Irradiação e	m: Efeito (%), distância (Å)ª
H_2	H1 (4%), 2,48; H11' (3%), 2,61
H_8	H_9 (4%), 2,61; H_{11} (3%), 2,64; $H_{11'}$ (2,5%), 2,74.
H_{10}	H ₁ (2,5%), 2,65; H ₉ (2%), 2,67.
aDistância ou	atro os átomos no ospaco (calculada no programa PC

^aDistância entre os átomos no espaço (calculada no programa PC Model).

rel-(1S,2R,7R,8R)-7-Nitrotriciclo[6.2.1.0.2,7]undec-9-en-3-ona (127b).

127b

. Espectro de RMN ¹H.

O sinal de absorção de H₂ aparece em δ 3,15, desdobrado em um dubleto com J \cong 3 Hz, referente ao acoplamento a longa distância com H₁₁ (ver expansões no espectro).

O duplo-dubleto em δ 1,75 foi atribuído a H6'. O deslocamento deste hidrogênio para campo baixo, em relação isômero com configuração *endo*, sustenta a configuração *cis-exo* de **127b**.

Adicionalmente, experimentos de NOE confirmam esta interpretação (veja a tabela 45).

Seção de Espectros

Composto 127b

. Espectro de RMN ¹³C (BB e DEPT 135).

127b. (a) BB; (b) DEPT 135, \downarrow (CH, CH₃); \uparrow (CH₂).

H: δ [<i>m</i> , Integral relativa, J (Hz)]			
,50 (m, 1H)	52,20		
(d, 1H, J= 3,0)	54,27		
-	209,51		
= 18,5; J ₂ = 7,0; J ₃ =J ₄ = 2,0)	37,64		
$J_1= 18,5; J_2=10; J_3= 8,2)$	37,64		
-2,00 (m, 2H)	18,30		
-2,00 (m, 2H)	18,30		
,72 (m, 1H)	35,56		
1=14; J2== 12,4; J3= 4,8)	35,56		
-	100,45		
,35 (m, 1H)	44,62		
1H, J ₁ = 5,8; J ₂ =3,1)	138,59*		
1 H, $J_1 = 5, 8; J_2 = 2, 8$)	134,26*		
$_1=9,7; J_2=3,0; J_3=J_4=1,5)$	47,22		
(d, 1H, J= 9,7)	47,22		
	egral relativa, J (Hz)] $\overline{,50 \text{ (m, 1H)}}$ (d, 1H, J= 3,0) - $= 18,5; J_2=7,0; J_3=J_4=2,0)$ $J_1= 18,5; J_2=10; J_3=8,2)$ I-2,00 (m, 2H) I-2,00 (m, 2H) I-2,00 (m, 2H) I-2,00 (m, 2H) I-2,00 (m, 2H) I-2,00 (m, 2H) I-3,50 (m, 1H) $I=14; J_2==12,4; J_3=4,8)$ - $J_1=14; J_2==12,4; J_3=4,8)$ $I=14; J_2==3,0; J_3=J_4=1,5)$ $I=14; J_2=3,0; J_3=J_4=1,5)$ $I=14; J_2=3,0; J_3=J_4=1,5)$ $I=14; J_2=3,0; J_3=J_4=1,5)$		

Tabela **43**: Atribuição dos deslocamentos químicos aos hidrogênios (H) e carbonos (C) do composto **127b**.

. Espectro de Infravermelho

Figura 93: Espectro de IV do composto 127b.

Tuncionais ut	
V _{max}	Atribuição
2948	Deformação axial de C-H
2872	Deformação axial de C-H
1705	Deformação axial de C=O larga
1535	Deformação axial de N=O
1463	Deformação angular assimétrica fora do plano de
	C-H (metileno)
725	Deformação angular assimétrica no plano de C-H
	(metileno)

Tabela **44**: Atribuição das bandas de absorção de IV a grupos funcionais do composto **127b**.

. Espectro de Massas

Figura 94: Espectro de massas do composto 127b.

Tabela 45: Ex	perimento d	e NOE	para	o comj	posto	127b	•

Irradiação en	n: Efeito (%), distância (Å)a
H_2	H ₁ (2,1%), 2,86; H ₁₀ (2%), 2,95
H_8	H_9 (4%), 2,66; H_{11} (1,5%), 2,62; $H_{11'}$ (2,5%), 2,70.
H_{10}	H ₁ (3,5%), 2,59; H ₂ (2,5%), 2,95; H ₉ (2,5%), 2,67.
aDistância ent	re os átomos no espaço (calculada no programa PC

^aDistância entre os átomos no espaço (calculada no programa PC Model).