

Universidade de São Paulo Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Química Programa de Pós-Graduação em Química

"Pentacloreto de nióbio como ácido de Lewis em

síntese orgânica"

Valdemar Lacerda Júnior

Tese apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para a obtenção do título de Doutor em Ciências, Área: **Química**

RIBEIRÃO PRETO -SP

2004

Universidade de São Paulo Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Química Programa de Pós-Graduação em Química

"Pentacloreto de nióbio como ácido de Lewis em

síntese orgânica"

Valdemar Lacerda Júnior

Tese de Doutorado

Orientador: Prof. Dr. Mauricio Gomes Constantino

RIBEIRÃO PRETO -SP

2004

"Dedico esta tese ao meu filho Felipe de 4 anos e ao meu filho ou filha (Mateus ou Luana) que nascerá em maio, minha esposa Angela, meus pais e irmãos, pessoas queridas que somaram uma dimensão e sentido especial em minha vida"

Agradecimentos

Um dos melhores momentos do processo de escrever uma tese é aquele em que o autor tem a oportunidade de agradecer àqueles que o ajudaram, porque raramente (e neste caso certamente não) um pesquisador faz seu trabalho sozinho.

Meus sinceros agradecimentos:

Ao Prof. Dr. Mauricio Gomes Constantino, meu orientador e também educador, que soube estimular, aconselhar, criticar e orientar de forma segura este trabalho até a sua conclusão, respeitando a minha liberdade e forma de trabalhar.

Ao Prof. Dr. Gil Valdo José da Silva, pela colaboração e interesse com que acompanhou este trabalho.

Ao Prof. Dr. Pedro Henrique Ferri e ao Prof. Dr. Silvio do Desterro Cunha, pela amizade, apoio, incentivo e ensinamentos durante minha iniciação científica.

Aos Profs. Dr. Paulo Marcos Donate e ao Prof. Dr. Sérgio Emannuel Galembeck, e aos colegas do LSO/FFCLRP (Adilson, Adriana, Aline, Altamiro, Álvaro, Barbieri, Boi, Cláudio, Daniel Frederico, Érika, Felipe, Gilberto, Giovanni, Jamanta, Kléber, Lilian, Mirela, Paulo, Ricardo, Susimaire, Valquíria, Vanessa, Vinícius, Vladimir e outros que tenha esquecido).

À Virgínia, pelo profissionalismo na obtenção dos espectros de RMN contidos nesta tese.

Ao Djalma, pelos espectros de IV e massas.

Aos amigos da **DIRETORIA** Daniel Frederico (Cobra Criada), Adilson Beatriz (Bugrão), Felipe Augusto (Pancinha), Álvaro, Cláudio, Paulo (Mion) e o Kleber (Gozadô), pelas ricas discussões sobre síntese orgânica, ressonância magnética nuclear e pela convivência agradável.

Aos funcionários do Departamento de Química que direta ou indiretamente colaboraram para a realização deste trabalho.

A todas as pessoas que de alguma forma contribuíram para a realização deste trabalho.

À CBMM (Companhia Brasileira de Mineralogia e Mineração) pelo pentacloreto de nióbio.

À FAPESP, CAPES e ao CNPq pelo apoio financeiro.

ÍNDICE

Abreviações e Símbolos		
Resumo	iv	
Summary	vi	
1.Introdução	1	
1.1. Sobre o Nióbio	2	
1.2. Aplicações de Compostos de Nióbio em		
Síntese Orgânica	4	
1.3. Ácidos de Lewis	9	
2. Plano de Pesquisa	13	
3. Objetivos	16	
4. Discussão dos Resultados	18	
4.1. Reações de Abertura de Epóxidos	19	
4.1.1. Preparação dos Epóxidos	19	
4.1.2. Reações de Epóxidos com NbCl ₅	27	
4.1.3. Sugestões para Estudos Futuros	41	
4.2. Reações de Diels-Alder e Substituição Eletrofilica	42	
4.2.1.Reações de Diels-Alder entre Ciclo-Enonas		
e Ciclopentadieno	42	
4.2.2. Reações de Substituição Eletrofílica no anel		
Furano	47	
4.2.3. Estudos Teóricos Sobre Reações de Diels-Alder	51	

Pentacloreto de Nióbio como Ácido de Lewis em Síntese Orgânica

4.2.4. Sugestões para Estudos Futuros	56
4.3. Formação de β-Cloro-Enonas e β-Etóxi-Enonas	57
4.3.1. Preparação dos Acetatos Enólicos	58
4.3.2. Reações das Ciclo-Enonas com NbCl ₅	59
4.3.3. Estudos de RMN das Ciclo-Enonas	67
4.3.4. Sugestões para Estudos Futuros	71
5. Conclusão	72
6. Seção de Espectros	
7. Parte Experimental	228
8. Referências Bibliográficas	280

B3LYP	Terceira revisão do método de Becke, usando funcional de correlação de Lee-Yang-Parr
CG	Cromatografia gasosa
CCD	Cromatografia em camada delgada
COSY	Correlated spectroscopy
DMAP	4-Dimetilaminopiridina
DEPT:	Distortionless Enhancement by Polarization
	Transfer
EM	Espectrometria de massa
Et	Etil
EtOAc	Acetato de etila
FMO	Orbitais moleculares de fronteira
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Correlation
HOMO	Highest occupied molecular orbital
IV	Infravermelho
J	Constante de acoplamento
J-resolved	J-resolved spectroscopy
lit.	Literatura
LUMO	Lowest unoccupied molecular orbital
$M^{+.}$	Íon molecular
Ме	Metil
MCPBA	Ácido meta-cloro-perbenzóico
МеОН	Metanol
m/z	Relação massa/carga
NOE	Efeito Nuclear Overhauser
Ру	Piridina
p.f.	Ponto de fusão
RMN	Ressonância magnética nuclear
RMN 2D	Ressonância magnética nuclear de 2 dimensões
RMN ¹ H	Ressonância magnética nuclear de hidrogênio
RMN ¹³ C	Ressonância magnética nuclear de carbono 13

Pentacloreto de Nióbio como Ácido de Lewis em Síntese Orgânica

- ¹³C{¹H} Ressonância Magnética Nuclear de carbono 13 totalmente desacoplado de hidrogênio
 S_N2 Substituição nucleofílica bimolecular
- t.a. Temperatura ambiente
- TMS Tetrametilsilano

Observação: Neste texto não será dada atenção à configuração absoluta, mas apenas à configuração relativa dos vários centros assimétricos. Todas as fórmulas de substâncias dotadas de assimetria simbolizam misturas racêmicas; é representado apenas um dos enantiômeros por simplicidade. Apenas as estruturas indicadas com nomenclatura específica constituem exceção.

RESUMO

O objetivo deste trabalho foi investigar o uso de NbCl₅ como ácido de Lewis em síntese orgânica (reações de abertura de epóxidos, reações de Diels-Alder e substituição eletrofílica de ciclo-enonas no anel furano e em reações de formação de β -cloro-enonas e β -etóxi-enonas a partir de β -dicetonas e seus derivados acetilados.

O comportamento de vários epóxidos quando tratados com NbCl₅ foi estudado. Em geral verificou-se que os epóxidos estudados reagem rapidamente com NbCl₅, levando geralmente à formação de mais de um produto (cloridrinas, 1,2-dióis, produtos contendo resíduos de solvente, como também produtos de rearranjo foram obtidos). Foi realizado um estudo detalhado verificando o efeito da temperatura (t.a., 0°C ou -78°C) e da concentração molar de NbCl₅ nessas reações, com relação ao tempo e rendimento das reações, e à composição dos produtos.

Reações entre diferentes ciclo-enonas (dienófilos de baixa reatividade) com ciclopentadieno e furanos (dienos) foram realizadas na presença de NbCl₅. As reações mostraram que o NbCl₅ é um bom ácido de Lewis para ativar reações de Diels-Alder ou substituição eletrofílica do hidrogênio pela ciclo-enona no anel furano. O produto de Diels-Alder foi obtido apenas na reação entre a ciclo-hexenona (**26**) e o dieno mais reativo (ciclopentadieno). Dienos menos reativos, furano (**32**) e 2-metil-furano (**33**) levaram à formação de produtos de substituição eletrofilica do hidrogênio pela ciclo-enona no anel furano.

Diels-Alder e Substituição eletrofílica

 β -Dicetonas e seus derivados acetilados foram convenientemente transformados em β -cloro-enonas e β -etóxi-enonas pelo tratamento com NbCl₅, em uma única etapa e em bons rendimentos. Observamos que quando as reações são realizadas em Et₂O ou CH₂Cl₂ como solventes, apenas β -cloro-enonas são formadas. Contudo, usando EtOAc como solvente, os resultados dependem da estrutura do substrato: substratos α -metilados formam exclusivamente β -cloro-enonas (como nos outros solventes), enquanto os outros substratos levam à formação de β -etóxi-enonas ou de misturas de β -cloro-enonas e β -etóxi-enonas.

Formação de β -cloro-enonas e β -etóxi-enonas

SUMMARY

The aim of this work was to investigate the use of NbCl₅ as Lewis acid in organic synthesis (opening of epoxide rings, Diels-Alder and electrophilic substitution of cycloenones in furan ring reactions and in the formation of β -chloroenones and β -ethoxyenones from β -diketones and the corresponding acetylated derivatives.

The behaviour of several epoxides when treated with NbCl₅ was studied. In general it was verified that the studied epoxides react rapidly with NbCl₅, giving, in most cases, more than one product (chlorohydrins, 1,2-diols, products containing solvent residues as well as rearrangement products were obtained). A detailed study was performed to verify the effect of the temperature (rt, 0°C or -78°C) and of the NbCl₅ molar concentration in the composition of the products, yield and time required for the reactions.

Reactions between different cycloenones (dienophiles of low reactivity) with cyclopentadiene and furans (dienes) were performed in the presence of NbCl₅. The reactions showed that NbCl₅ is a good Lewis acid for Diels-Alder or electrophilic substitution of the hydrogen by the cycloenone system in furan ring. The Diels-Alder product was obtained only in reaction between the cyclohexenone (**26**) and the highly reactive diene (cyclopentadiene). Less reactive dienes such as furan (**32**) and 2-methylfuran (**33**) gave electrophilic substitution of hydrogen by the cycloenone system in the furan ring. **Diels-Alder and ElectrophilicSubstitution**

 β -Diketones and the corresponding acetylated derivatives were conveniently transformed in β -chloroenones or β -ethoxyenones by treatment with NbCl₅, in one step and in good yields. When the reactions were carried out with Et₂O or CH₂Cl₂ as solvents, only β chloroenones were obtained. However, with EtOAc as solvent, the results depend on the structure of the substrate: α -methylated substrates gave exclusively β -chloroenones (as in other solvents), while the other substrates gave β -ethoxyenones or mixtures of β ethoxyenones and β -chloroenones.

Formation of β -chloroenones and β -ethoxyenones

1. Introdução

1.INTRODUÇÃO

1.1. Sobre o Nióbio

Recentemente nosso grupo de pesquisa teve sua atenção despertada para o elemento nióbio pelo fato de ele apresentar um alto potencial de utilização em Síntese Orgânica e por ser o Brasil o detentor das maiores reservas mundiais de nióbio, além de ser o maior produtor mundial desse elemento.^{1,2} Nas referências 1 e 2 são apresentados dados que mostram uma extraordinária supremacia do Brasil nesses aspectos: as reservas mundiais conhecidas de nióbio são de $14,5 \times 10^6$ t, sendo que o Brasil detém 12×10^6 t; todos os outros países têm menos que 1×10^6 t cada um; a produção brasileira de nióbio representa 60% da produção mundial, outros países produtores de nióbio são Canadá, Nigéria e Zaire.

Parece-nos, assim, que nada seria mais natural que a química do nióbio fosse desenvolvida por brasileiros.

O nióbio é um metal de número atômico 41, massa atômica relativa 92,906, pertencendo ao mesmo grupo, na tabela periódica, do tântalo e do vanádio, este último com tantas aplicações bem conhecidas em Síntese Orgânica.³

Os preços do nióbio (US\$ 22,20/50g niobium turnings, Aldrich) e de seus compostos (por exemplo, US\$ 270,40/300g NbCl₅, Aldrich) podem ser considerados como preços normais de reagentes químicos; compare-se, por exemplo, com o preço dos sais de tálio extensamente usados em Síntese Orgânica:

TlOAc	100g	US\$ 201,10
T1(OAc) ₃	25g	US\$ 124,40
T1(NO3)3.3H2O	100g	US\$ 212,00

Ou com o elemento selênio, também muito usado:

Selenium powder 250g US\$ 67,10

Muitos pesquisadores concentram suas atenções nas aplicações industriais de nióbio e seus compostos, para produção de catalisadores industriais^{2,4} e muitas outras. Entre estas aplicações podemos destacar:

- 1. Catálise Heterogênea componentes de catalisadores ou adicionados em pequenas quantidades a catalisadores
- 2. Tecnologia Nuclear
- 3. Supercondutividade magnetos
- 4. Industria Eletrônica capacitores
- 5. Cerâmicas
- 6. Implante ósseo
- 7. Suturas internas

Apesar do contínuo aumento no interesse das aplicações de nióbio e seus compostos em vários campos, encontramos poucos estudos sobre as propriedades e sua utilização em síntese orgânica.

1.2. Aplicações de Compostos de Nióbio em Síntese Orgânica

Uma pesquisa preliminar na literatura revelou-nos que existem algumas investigações sobre nióbio e seus compostos em andamento (como, aliás, é evidenciado indiretamente pelo fato de a Aldrich oferecer 14 compostos de nióbio para a venda). Apesar de serem numerosas as publicações, o número efetivo de tipos de reações é relativamente reduzido.

Há, por exemplo, várias reações do tipo McMurry, em que um acoplamento redutivo de compostos carbonílicos é promovido por um reagente de nióbio, levando à formação de alcenos. Entre essas reações podemos citar a ciclização redutiva de oxo-amidas⁵ formando os respectivos indóis.

Esquema 1

Existem ainda, variações das reações de McMurry,^{6,7} nas quais obtemos uma alta estereoseletividade e diastereoseletividade no acoplamento redutivo dos compostos carbonílicos promovido por reagentes de nióbio; dependendo das condições de reação, levam à formação de alcenos, dióis e acetais.

Ar: Ph; MeC₆H₄ ou MeOC₆H₄

Aldeídos e cetonas podem ser reduzidos produzindo olefinas diméricas,^{8,9} através de um reagente de nióbio preparado pelo tratamento de NbCl₅ com NaAlH₄, NbCl₅/K ou NbCl₅/MeLi.

Esquema 3

Outros tipos de reações com reagentes de nióbio são encontrados, como por exemplo, o NbCl₃(DME) preparado pela adição de NbCl₅ a uma solução de hidreto de tributil-estanho em dimetóxietano (DME) a -78° C.

Esquema 4

NbCl₅ + 2 Bu₃SnH \longrightarrow NbCl₃(DME) + 2 Bu₃SnCl + H₂

Este reagente é usado na preparação de amino-álcoois vicinais¹⁰ para promover o acoplamento de uma imina com um aldeído ou cetona.

Esquema 5

Pirróis n-substituídos também são obtidos quando iminas α,β-insaturadas são combinadas com um éster ou N,Ndimetilformamida em presença de NbCl₃(DME).¹¹

Esquema 6

O acoplamento de alcinos com 1,2-aril-di-aldeídos promovido por NbCl₃(DME) leva à formação dos naftóis 2,3-di-substituídos.¹²

Esquema 7

Existem também alguns exemplos de redução parcial de alcinos para alcenos (*Z*), 8,13 pelo tratamento com NbCl₅/NaAlH₄ ou NbCl₅/Zn.

Esquema 8

$$PhC \equiv CPh \xrightarrow{NbCl_5 / NaAlH_4} PhHC = CHPh Z$$

O sistema NbCl₅/NaAlH₄⁸ também é capaz de promover a desoxigenação de epóxidos para alcenos e o acoplamento redutivo de álcoois alílicos e benzílicos para hidrocarbonetos.

Esquema 9

Outras variações de reagentes de nióbio como MeNbCl₄ e Me₂NbCl₃ reagem com cetonas ou aldeídos de forma semelhante a uma reação de Grignard (contendo o produto o grupo Cl, ao invés de OH).¹⁴

Esquema 10

O sistema $BF_3.OEt_2$ + cat. NbCl₅ é capaz de promover a adição dupla de difenil-fosfina em vários aldeídos e cetonas α,β -insaturados.¹⁵

Esquema 11

Condensações de alil-silanos e alil-estananas com aldeídos e iminas são catalisadas por NbCl₅:¹⁶⁻¹⁸

A formação de íons N-acil-iminium e subseqüente adição de um nucleófilo são promovidas por NbCl₅.¹⁹

Esquema 14

 $Na \ \ presença \ \ de \ \ NbCl_5 \ \ \alpha-estanil-\beta-ceto-ésteres \ \ são \\ transformados \ nos \ respectivos \ \gamma-ceto-ésteres.^{20}$

Esquema 15

1.3. Sobre Ácidos de Lewis^{21,22}

Em 1938, Lewis (o mesmo das estruturas de Lewis) propôs uma definição mais ampla de ácidos e bases, para incluir compostos que não teriam essa classificação pelas definições de Arrhenius ou de Brønsted-Lowry. Segundo Lewis:

> Ácido é uma substância cuja molécula pode receber um par de elétrons (previamente um par de elétrons não compartilhados pertencente a uma base) para formar uma ligação covalente;

> Base é uma substância cuja molécula pode doar um par de elétrons a uma molécula de ácido para formar uma ligação covalente.

Na teoria de Lewis, o próton não é o único ácido; várias outras espécies também podem ser; qualquer substância que tenha um orbital vazio em nível de energia apropriado para receber um par de elétrons e formar uma ligação covalente, seria também um ácido de Lewis. Cloreto de alumínio e Trifluoreto de boro, por exemplo, reagem com amônia da mesma maneira que um próton.

Esquema 16

:NH₃ Base de Lewis Ácido de Lewis

de elétrons)

(aceptor de par de elétrons)

(doador de par

H-NH₂

9

Esquema 17

Nestes exemplos, cloreto de alumínio e o trifluoreto de boro aceitam um par de elétrons da amônia como se fosse um próton, usando este par de elétrons para formar uma ligação covalente com o átomo de nitrogênio. Eles fazem isto porque os átomos centrais, nestes compostos (alumínio e boro) possuem apenas seis elétrons na última camada e desta maneira, são híbridos sp² com um orbital p_z vázio. Quando eles aceitam um par de elétrons, cloreto de alumínio e trifluoreto de boro, estão de acordo com a definição de Lewis, agindo como ácidos.

Qualquer átomo elétron-deficiente pode agir como um ácido de Lewis. Vários compostos contendo elementos do Grupo IIIA como boro e alumínio são ácidos de Lewis, já que os átomos do Grupo IIIA possuem apenas seis elétrons na sua camada de valência. Vários outros compostos que possuem átomos com orbitais vazios também agem como ácidos de Lewis. Haletos de zinco e ferro (III) são freqüentemente usados como ácidos de Lewis em síntese orgânica.

Sais dos metais de transição possuem um átomo metálico que é capaz de assumir múltiplas valências. Quando os substituintes ligados ao metal o fazem suficientemente eletrofílico, o metal age como ácido de Lewis na presença de uma base de Lewis. $Os \ {\rm \acute{a}cidos} \ de \ Lewis \ usualmente \ possuem, \ a \ forma \ MX_n, \\ onde \ X \ {\rm \acute{e}} \ o \ ligante \ (um \ {\rm \acute{a}tomo} \ de \ halogênio, \ uma \ amina, \ etc.). \ O \\ metal \ {\rm \acute{e}} \ M \ e \ n \ {\rm \acute{e}} \ a \ valência \ normal \ do \ metal.$

A definição de Lewis para as reações ácido-base é muito ampla. Engloba praticamente todas as reações que não sejam radicalares ou pericíclicas, pois sempre que um par de elétrons é doado para uma substância fazer uma ligação com outra, podemos dizer que aquela que doa o par de elétrons é uma base e aquela que recebe é um ácido.

Muitas reações orgânicas envolvem várias transformações em seqüência, e quando olhamos para a reação global (reagentes de um lado e produtos finais de outro) elas não nos parecem reações ácido-base. Mas se observarmos o mecanismo detalhadamente, com todos os passos, podemos identificar várias reações ácido-base.

Força dos ácidos de Lewis

Há um número muito pequeno de medidas quantitativas da força dos ácidos de Lewis, comparado ao número de medidas de força dos ácidos de Brønsted-Lowry.

A razão para isto é simples: é que a força dos ácidos de Lewis depende da natureza da base de Lewis. Assim não se pode fazer tabelas simples de força de ácidos como as tabelas de pk_a. A perspectiva de conseguir resultados que podem não ser úteis devido à natureza complexa do problema normalmente desencoraja os pesquisadores de se esforçarem neste sentido. Não há (ou ainda não foi encontrada) maneira simples de definir a força de um ácido de Lewis como existe para os ácidos protônicos.

Em geral se faz uma comparação, sem números e aproximada para classificar alguns ácidos de Lewis. Uma seqüência

em ordem decrescente para os ácidos de Lewis mais comuns está apresentado abaixo:

 $BX_3 > AlX_3 > FeX_3 > GaX_3 > SbX_5 > InX_3 > SnX_4 > AsX_5 > SbX_3 > ZrX_4$

Ácidos de Lewis são usados em diferentes tipos de reações em síntese orgânica, como: reações do tipo de Friedel-Crafts, reações de Diels-Alder, reações pericíclicas, entre outras.

Dentre os ácidos de Lewis acima, cloreto de alumínio é um ácido de Lewis muito reativo e não seletivo, reagindo com a maioria dos grupos funcionais que possuem uma base de Lewis. Cloreto de zinco, contudo, é um ácido de Lewis de média reatividade e seletivo em algumas reações. Tetra-cloreto de estanho é um ácido de Lewis muito fraco e pode ser usado para acilação de compostos aromáticos reativos.

Ainda neste contexto é interessante notar que os sais dos metais do Grupo 5 dos metais de transição da tabela periódica, como o NbCl₅ não têm tido, pelo menos até o momento, grande aplicabilidade em transformações orgânicas.

2. Plano de Pesquisa

2. PLANO DE PESQUISA

Em nosso projeto inicial propusemos preparar alguns epóxidos e estudar as potencialidades do uso de pentacloreto de nióbio (NbCl₅) como ácido de Lewis nas reações de abertura dos epóxidos preparados.

Nossa meta inicial era de sintetizar os epóxidos apresentados na Figura 1.

Figura 1

Os epóxidos escolhidos seguem uma premissa: a facilidade de sua preparação e sua importância dentro do contexto da Síntese Orgânica, sendo que todos são encontrados como intermediários em sínteses de produtos naturais.²³⁻²⁵

Em seguida daríamos início ao estudo do uso de NbCl₅ - pentacloreto de nióbio como ácido de Lewis em reações de abertura

de epóxidos, devido ao fato de que este reagente vem apresentando comportamento de ácido de Lewis em alguns tipos de reações.⁵⁻²⁰

Como o objetivo do projeto é de desenvolver métodos sintéticos que possam efetivamente ser usados por químicos orgânicos, propomos também desenvolver métodos práticos, e tão simples quanto possíveis, para manipular adequadamente os reagentes, tendo então, certeza de que dominamos todas as variáveis do processo, o tornando eficiente e facilmente aplicável.

Os estudos a serem desenvolvidos no projeto incluíam:

- 1. Verificação da reatividade de NbCl₅ com várias funções orgânicas.
- 2. Determinação de solventes adequados para efetuar as transformações desejadas.
- 3. Verificação do efeito da temperatura nas várias reações envolvidas.
- 4. Métodos para manipular o reagente ou desenvolvimento de compensações adequadas para erros de procedimento.
- 5. Efeito da relação molar entre reagente e substrato.
- 6. Efeito da concentração.

3. Objetivos

3. OBJETIVOS

.

Neste trabalho temos como objetivo principal estudar o comportamento do pentacloreto de nióbio como ácido de Lewis em síntese orgânica, especificamente em reações de abertura de epóxidos, reações de Diels-Alder e substituição eletrofílica do hidrogênio pela ciclo-enona no anel furano, além da formação de β -cloro-enonas e β -etóxi-enonas a partir de β -dicetonas e seus derivados acetilados.

4. Discussão dos Resultados

4. DISCUSSÃO DOS RESULTADOS

4.1 – Reações de Abertura de Epóxidos

Epóxidos estão entre os grupos funcionais mais versáteis em química orgânica, reagindo com um grande número de reagentes, como: eletrófilos, nucleófilos, ácidos, bases e radicais. Reações que promovam a abertura de epóxidos são frequentemente usadas na síntese de produtos naturais. $BF_3.Et_2O$ é o ácido de Lewis comumente usado para este propósito.^{26,27}

Neste sentido, como o propósito inicial do nosso projeto de pesquisa era realizar um estudo sobre o uso de NbCl₅ em reações de abertura de epóxidos, primeiramente, os epóxidos escolhidos foram preparados e em seguida usados nos experimentos sistemáticos com NbCl₅.

4.1.1 – Preparação dos Epóxidos

Com intuito de preparar o epóxido de isoforona foi feita a reação entre isoforona e H_2O_2 a 30 % em meio básico, obtendo-se o epóxido **1** com um rendimento de 70% na forma de um óleo incolor. Durante a reação é necessário fazer um controle rígido da temperatura, principalmente durante a etapa de adição de NaOH 6 mol /L, para evitar a formação de subprodutos.

Esquema 18

Discussão dos Resultados - Reações de Abertura de Epóxidos

Este é o método geralmente empregado na preparação de epóxidos de cetonas α,β -insaturadas. A dupla ligação C=C desses compostos é pouco nucleofílica devido à conjugação com a carbonila e não reage bem com perácidos. Por este motivo, utiliza-se um reagente nucleofílico que reage de acordo com o mecanismo a seguir:

Esquema 19

O epóxido **1** foi caracterizado através de métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM) e comparados com dados da literatura.²⁸

Em seguida foi preparado o epóxido de ciclo-hexeno (**2**) pela reação entre ciclo-hexeno e ácido meta-cloro-perbenzóico 85% (MCPBA), obtendo-se um rendimento de 65% do epóxido **2**, na forma de um óleo incolor.

Esquema 20

O mecanismo desta reação é o que geralmente ocorre nas reações de epoxidação de olefinas realizado por um ataque eletrofílico.

Esquema 21

Discussão dos Resultados - Reações de Abertura de Epóxidos

Para prepararmos o epóxido de 1-metil-ciclo-hexeno (**3**) tivemos que preparar inicialmente o 1-metil-ciclo-hexeno (**3c**). Para tanto fizemos uma reação de Grignard entre a ciclo-hexanona (**3a**) com iodeto de metil magnésio, o que forneceu o 1-metil-ciclo-hexanol (**3b**) com um rendimento de 50% após duas horas de reação.

Esquema 22

Em seguida, o 1-metil-ciclo-hexanol (**3b**) foi tratado com ácido fosfórico 85% e aquecimento, fornecendo o 1-metil-ciclohexeno (**3c**) com um rendimento de 64% em quinze minutos de reação.

Esquema 23

O mecanismo desta reação está esquematizado abaixo:

Esquema 24

A reação entre o 1-metil-ciclo-hexeno (**3c**) e MCPBA 50%, forneceu o epóxido **3** após quinze minutos de reação com um rendimento de 71% e na forma de um óleo incolor.

Esquema 25

O mecanismo desta reação é o que geralmente ocorre nas reações de epoxidação de olefinas realizado por um ataque eletrofílico.

Esquema 26

Os compostos **3b**, **3c** e **3** foram caracterizados através de métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

Encontramos uma pequena dificuldade na preparação do epóxido de α -pineno (**4**), pois a reação entre α -pineno e MCPBA a 50% não forneceu o epóxido e sim vários outros produtos, provavelmente devido à acidez do meio, ocasionado pela baixa concentração do MCPBA utilizado. Então resolvemos mudar o procedimento e utilizar bicarbonato de sódio ao meio reacional.²⁹

A reação entre α -pineno e ácido meta-cloro-perbenzóico a 50% na presença de NaHCO₃ foi realizada mantendo-se a temperatura entre 5-10°C, o que forneceu após 1 hora de reação, o epóxido de α -pineno (**4**) em 85 % de rendimento, na forma de um óleo incolor.

O mecanismo desta reação é o que geralmente ocorre nas reações de epoxidação de olefinas realizado por um ataque eletrofílico.

Esquema 28

O epóxido **4** foi caracterizado através de métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM). Para atribuição dos sinais de RMN de ¹H e ¹³C do composto **4** foram feitos experimentos de RMN 2D (HMQC, COSY e *J*-resolved) e experimentos de NOEDIFF para a determinação da estereoquímica relativa, os resultados estão apresentados na seção de espectros.

O epóxido de verbenona (**5**) foi preparado tratando a L (-) verbenona com H_2O_2 30% em meio básico, obtendo-se o epóxido **5** na forma de um óleo incolor, com um rendimento de 73% e em quinze minutos de reação. Durante a reação é necessário fazer um controle rígido da temperatura, principalmente durante a etapa de adição de NaOH 6 mol/L, para evitar a formação de subprodutos.

O epóxido **5** é formado inicialmente pelo ataque do ânion de água oxigenada ao carbono terciário da dupla ligação pelo lado contrário da ponte, como mostra o mecanismo a seguir:

Esquema 30

O epóxido **5** foi caracterizado através de métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM). Para atribuição dos sinais de RMN de ¹H e ¹³C do composto **5** foram feitos experimentos de RMN 2D (HMQC, COSY e *J*-resolved) e experimentos de NOEDIFF para a determinação da estereoquímica relativa, os resultados estão apresentados na seção de espectros.

O epóxido de β -pineno (**6**) foi preparado pela reação entre ácido meta-cloro-perbenzóico (MCPBA) 70% e bicarbonato de sódio em diclorometano com (-)- β -pineno, após 90 minutos de reação o epóxido **6** foi obtido com um rendimento de 65% na forma de um óleo incolor. Durante a reação, é necessário fazer um controle rígido da temperatura, principalmente durante a etapa de adição do β pineno, com o propósito de se evitar a formação de subprodutos.

O mecanismo de formação do epóxido **6** é idêntico ao de formação do epóxido **4**.

O epóxido **6** foi caracterizado através de métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

Em seguida, o epóxido de carvona (**7**) foi preparado pelo tratamento de L-(-)-carvona com H_2O_2 30% em meio básico, o que forneceu o epóxido **7** após 15 minutos de reação em um rendimento de 80%, na forma de um óleo incolor. Durante a reação, assim como para preparação do epóxido **5**, é necessário fazer um rígido controle da temperatura, principalmente durante a etapa de adição do NaOH 6 mol/L.

Esquema 32

O mecanismo de formação deste epóxido é idêntico ao de formação do epóxido **5**.

O epóxido **7** foi caracterizado através de métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM). Para atribuição dos sinais de RMN de ¹H e ¹³C do composto **7** foram feitos experimentos de RMN 2D (HMQC, COSY e *J*-resolved)

e experimentos de NOEDIFF para a determinação da estereoquímica relativa, os resultados estão apresentados na seção de espectros.

Também preparamos o epóxido de cromona (**8**) pelo tratamento da cromona com H_2O_2 30% em meio básico, obtendo-se epóxido **8** após 15 minutos de reação, na forma de um sólido branco (p.f.=63-64°C; lit.³⁰ 65-66°C), em um rendimento de 73 %. O epóxido **8** foi purificado por recristalização usando uma mistura de metanol e hexano como solvente.

Esquema 33

O mecanismo desta reação é o que normalmente ocorre na preparação de epóxidos de cetonas α , β -insaturadas, onde se utiliza um reagente nucleofílico que reage como mostrado a seguir:

Esquema 34

O epóxido **8** foi caracterizado através de métodos espectrocópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

4.1.2. Reações de Epóxidos com NbCl₅

Em seguida foi dado início ao estudo sistemático com NbCl₅, utilizando-se os epóxidos **1** - **8**.³¹⁻⁴⁰ As reações foram realizadas sob atmosfera de N₂ e com solvente anidro (acetato de etila), variando-se a proporção epóxido/NbCl₅ e a temperatura da reação (t.a., 0°C ou -78°C).

Inicialmente o epóxido de isoforona (**1**) foi tratado com NbCl₅, levando à formação de 2 produtos: o ceto-aldeído (produto de rearranjo) **9** e da α -dicetona **10** (representada na sua forma enólica, que é a mais estável), que foram separados por cromatografia de coluna em sílica-gel, eluindo-se com hexano:EtOAc, 8:2, e caracterizados por métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM) e comparado com dados da literatura.⁴¹

Esquema 35

A tabela 1 mostra os dados das reações do epóxido **1** com NbCl₅ em diferentes condições.

Tabela 1 – Dados das reações do epóxido 1 com NbCl_5 em diferentes condições. Epóxido: 154 mg (1,0 mmol)

Massa de NbCl ₅	NbCl₅(eq.)	Conversão epóxido, %	Temp. (°C)	Tempo (min.)	Rend. Bruto, (%)	Prop de prod	orção os utos,
(mg)						9 9	% 10
135	0,5	100	t.a.	1	81	80	20
33,8	0,125	100	t.a.	5	73	90	10
135	0,5	100	0	1	70	86	14
33,8	0,125	100	0	10	70	94	6
135	0,5	100	-78	20	86	95	5

Discussão dos Resultados - Reações de Abertura de Epóxidos

O ceto-aldeído **9** (um óleo amarelo) e a α -dicetona **10** (sólido cristalino branco, p.f.: 88-89°C) são formados pela quebra da quebra da ligação carbono-oxigênio do átomo de carbono mais substituído, resultando em um carbocátion terciário, que pode sofrer migração de um grupo acila, formando **9** ou eliminação de H⁺, formando **10** (Esquema 36).

Esquema 36

O tratamento do epóxido de ciclo-hexeno (**2**) com NbCl₅ forneceu 2 produtos, a *trans* cloridrina **11** e o *trans* álcool-acetato **12**, que foram separados por cromatografia de coluna em sílica-gel, eluindo-se com hexano:EtOAc, 8:2, e caracterizados por métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

Esquema 37

A tabela 2 apresenta os dados das reações do epóxido $\mathbf{2}$ com NbCl₅ em diferentes condições.

Discussão dos Resultados - Reações de Abertura de Epóxidos

Massa de NbCl ₅ (mg)	NbCl₅(eq.)	Conversão epóxido, %	Conversão Temp. Tempo Rend. epóxido, (°C) (min.) Bruto*, % (%)		Proporção dos produtos, %		
						11	12
135	0,5	100	t.a.	1	62	77	23
33,8	0,125	100	t.a.	1	69	85	15
135	0,5	100	0	1	65	85	15
33,8	0,125	100	0	1	70	90	10
135	0,5	100	-78	1	77	87	13
33,8	0,125	100	-78	1	75	91	9

Tabela 2-Dados das reações do epóxido **2** com NbCl₅ em diferentes condições. Epóxido: 98 mg (1mmol)

* Baseado no produto em maior proporção.

Como observado no esquema acima o epóxido 2 reage de uma forma diferente, ele não possui um átomo de carbono totalmente substituído para favorecer sua abertura, desta maneira a estereoquímica *trans* dos produtos formados sugere que o epóxido, ativado pelo ácido de Lewis (NbCl₅), reage através de um mecanismo S_N2, ataque do íon Cl⁻ para formar **11** ou pelo solvente para formar **12** (Esquema 38).

Esquema 38

Em seguida estudamos o comportamento do epóxido de 1-metil-ciclo-hexeno (**3**), quando tratado com NbCl₅. A reação com NbCl₅ levou à formação de 2 produtos: a cloridrina **13** e o diol **14**, que foram separados por cromatografia de coluna em sílica-gel, eluindo-se com hexano:EtOAc:MeOH, 8:1:1, e caracterizados por métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

Esquema 39

A tabela 3 apresenta os dados das reações do epóxido ${\bf 3}$ com NbCl₅ em diferentes condições

Tabela 3-Dados das reações do epóxido **3** com NbCl₅ em diferentes condições. Epóxido: 112 mg (1mmol)

Massa de NbCl ₅ (mg)	NbCl₅(eq.)	Conversão Epóxido, %	Temp. (°C)	Tempo (min.)	Rend. Bruto*, (%)	Proporção dos produtos, %	
						13	14
135	0,5	100	t.a.	1	74	43	57
16,8	0,0625	100	t.a.	1	69	50	50
135	0,5	100	0	1	69	52	48
16,8	0,0625	100	0	1	73	60	40
135	0,5	100	-78	1	72	70	30
16,8	0,0625	100	-78	1	75	81	19

* Baseado no produto em maior proporção.

O carbocátion terciário resultante do epóxido **3** não possui grupos com aptidão migratória, nem um grupo carbonila como a do epóxido **1** para favorecer a formação da dupla ligação conjugada através da eliminação de H⁺, a reação então, segue um caminho diferente: adição do íon Cl⁻, o qual, considerando a estereoquímica do produto **13**, aparentemente vem do resíduo de NbCl₅ ainda ligado ao átomo de oxigênio do epóxido. O composto **14** é aparentemente formado durante o processo de hidrólise, sendo que sua estereoquímica sugere a participação do catalisador na introdução do grupo OH no átomo de carbono terciário (Esquema 40).

A estereoquímica relativa dos compostos **11**, **12** e **14** foi determinada baseado nos seus espectros de RMN ¹H e RMN ¹³C e comparados com dados da literatura.^{42,43} Para o composto **13** foram realizados estudos de modelagem molecular - mecânica molecular com o auxílio do programa PCModel 7.0,⁴⁴ os quais mostraram que experimentos de NOE poderiam levar a resultados ambíguos, já que este efeito poderia ser observado tanto para o isômero *cis* quanto para o isômero *trans*, pois à distância entre o hidrogênio carbinólico e os hidrogênios da metila ficou abaixo de 4Å. Contudo, as constantes de acoplamento entre o hidrogênio carbinólico e os dois hidrogênios vizinhos seriam bem diferentes para os dois isômeros possíveis (*cis* e *trans*) do composto **13** (tabela 4).

Tabela 4 - Valores	de J vicinais	calculados e	experimentais	para o
composto 13.				

	Compo	osto 13
	J 1 (Hz)	J ₂ (Hz)
Valores calculados para o isômero trans :	4,3	2,7
Valores calculados para o isômero <i>cis</i> :	10,6	4,4
Valores experimentais :	9,5	4,3

A grande semelhança entre os valores experimentais e os valores calculados das constantes de acoplamento para o isômero *cis* do composto **13**, como também a ausência de valores em torno de 10 Hz nos valores calculados para o isômero *trans*, claramente, estabelece que o composto **13** possui a estereoquímica relativa *cis*.

Já o tratamento do epóxido de α -pineno (**4**) com NbCl₅ à temperatura ambiente forneceu uma mistura de vários compostos. Reações realizadas a baixa temperatura (-78°C) mostraram ser mais

31

seletivas, levando à formação de quatro produtos: o aldeído canfolênico **15**, o *trans*-cloro-carveol **16**, o *trans*-carveol **17** e o *cis*-cloro-álcool **18**. Os 4 produtos foram separados por cromatografia de coluna em sílica-gel, eluindo-se com hexano:EtOAc:MeOH, 8:1:1, e caracterizados por métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

Esquema 41

A tabela 5 apresenta os dados das reações do epóxido ${f 4}$ com NbCl₅ em diferentes condições

condições	s. Epoxía	0: 152 1	ng (1mm	101)					
Massa de	NbCl₅ (Eq.)	Temp. (°C)	Tempo (min)	Rend. Bruto	Prop	orção (los proc %	lutos,	
NbC15		•••		(%) *	15	16	17	18	
(mg)									
135	0,5	t.a.	1	-	I	Mistura complexa			
135	0,5	0	1	-	I	Mistura	complex	xa	
16,8	0,0625	0	1	67	39	30	26	5	
135	0,5	-78	1	69	43	43	5	9	
33,8	0,125	-78	1	71	45	38	14	3	
16,8	0,0625	-78	1	75	47	27	24	2	

Tabela 5 – Dados das reações do epóxido **4** com NbCl₅ em diferentes condições. Epóxido: 152 mg (1mmol)

* Baseado no produto em maior proporção.

O epóxido de α -pineno mostrou-se bastante reativo, pois as reações com NbCl₅ foram muito rápidas mesmo a baixa temperatura e com pequena quantidade de pentacloreto de nióbio (0,0625 eq.), fornecendo vários produtos.

Apesar da reação do epóxido de α -pineno fornecer uma mistura com 4 produtos, podemos ressaltar a formação do aldeído

canfolênico **15** (importante intermediário na síntese de vários produtos naturais)⁴⁵ e do *trans*-cloro-carveol **16**, que são em geral, os produtos principais da reação.

A presença do aldeído canfolênico **15** e do *cis*-cloro-álcool **18** entre os produtos da reação é explicada pela coordenação do NbCl₅ com o átomo de oxigênio do epóxido, seguido da quebra da ligação carbono-oxigênio do átomo de carbono mais substituído do epóxido, resultando em um carbocátion terciário, que sofre ataque do carbono C-6, gerando o intermediário **4a**, levando ao aldeído **15** ou pode sofrer ataque do íon cloreto pelo lado contrário da ponte, fornecendo o produto **18** (Esquema 42).

Esquema 42

Já a formação do *trans*-cloro-carveol **16** e do *trans*-carveol **17** envolve a quebra da ligação do epóxido do átomo de carbono mais substituído, resultando em um carbocátion terciário e posterior quebra da ligação C6-C7, gerando o intermediário **4b**, que pode sofrer ataque de um íon Cl⁻ e formar o produto **16** ou perder H⁺ e fornecer o *trans*-carveol **17** (Esquema 43).

```
Esquema 43
```


O tratamento do epóxido de verbenona **5** com NbCl₅ forneceu dois produtos: um aldeído, que podemos ver claramente nos espectros de ressonância magnética nuclear sendo o produto de maior proporção, contudo, não pôde ser isolado devido a sua instabilidade, e também o composto **19**. O composto **19** foi separado por cromatografia de coluna em sílica-gel, eluindo-se com hexano:EtOAc:MeOH, 8:1:1, e caracterizado por métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

Esquema 44

A tabela 6 apresenta os dados das reações do epóxido **5** com NbCl₅ em diferentes condições.

Massa NbCl ₅ (eq.) Conversão Temp. Tempo Rend. Proporçã de epóxido, (°C) (min.) Bruto*, dos	io
NbCl5%(%)produtos,(mg)Aldeído	, % 19
135 0,5 100 t.a. 1 70 Mistura complex	ι a
16,8 0,0625 34 t.a. 480 71** 65	35
135 0,5 100 -78 60 69 50	50
67,5 0,25 100 -78 200 65 57	43

Tabela 6 - Dados das reações do epóxido **5** com NbCl₅ em diferentes condições. Epóxido: 166 mg (1mmol)

* Baseado no produto em maior proporção.

** Nos casos em que o material de partida foi parcialmente recuperado, o rendimento dos produtos foi calculado considerando apenas a massa de material de partida efetivamente transformado.

A formação do composto **19** pode ser explicada pela coordenação do NbCl₅ com o átomo de oxigênio do epóxido, quebra da ligação carbono-oxigênio do átomo de carbono mais substituído do epóxido, resultando em um carbocátion terciário (**5a**) e posterior quebra da ligação C6-C7, gerando o intermediário **5b**, que pode sofrer ataque de um íon cloreto (Cl⁻) e formar o produto **19**.

Esquema 45

Como já foi dito anteriormente, não foi possível elucidar a estrutura do aldeído, que vemos claramente nos espectros de RMN ¹H bruto, contudo parece sofrer degradação durante as tentativas de purificação. Continuando os nossos estudos, o epóxido de β -pineno (**6**) foi tratado com NbCl₅. A reação deste epóxido forneceu três produtos: os compostos **20**, **21** e **22** que foram separados por cromatografia de coluna em sílica-gel eluindo-se com hexano: EtOAc: MeOH, 8:1:1 respectivamente e caracterizados por métodos espectroscópicos (RMN ¹H e RMN ¹³C).

Esquema 46

A tabela 7 apresenta os dados das reações do epóxido ${\bf 6}$ com NbCl₅ em várias condições.

Tabela 7- Dados das reações do epóxido 6 com NbCl ₅ em	diferentes
condições. Epóxido: 152 mg (1 mmol)	

Massa de NbCl ₅ (mg)	NbCl₅ (eq.)	Conversão epóxido (%)	temp. (°C)	tempo (min.)	Rend. Bruto * (%)	Proporçã dos produtos,		ção s, %
(8,						20	21	22
135	0,5	100	t.a	1	65	41	42	17
16,8	0,0625	100	t.a.	1	67	25	56	19
135	0,5	100	0	1	69	31	49	20
16,8	0,0625	100	0	1	70	21	65	14
135	0,5	100	-78	1	73	20	52	28
16,8	0,0625	100	-78	1	75	12	75	13

* Baseado no produto de maior proporção

O epóxido de β -pineno (**6**) mostrou-se bastante reativo, pois as reações com NbCl₅ foram muito rápidas mesmo a baixa temperatura.

A presença dos compostos **20** e **21** pode ser explicada pela coordenação do NbCl₅ ao átomo de oxigênio do epóxido, quebra

da ligação carbono-oxigênio do átomo de carbono mais substituído do epóxido, gerando um carbocátion terciário e posterior quebra da ligação C6-C7 resultando no intermediário **6a** que pode sofrer ataque do íon cloreto e formar o produto **21** ou perder H⁺ resultando no produto **20**. Já o composto **22** é aparentemente formado durante o processo de hidrólise.

Esquema 47

Em seguida começamos o estudo sistemático da reação do epóxido de carvona (**7**) com NbCl₅. A reação deste epóxido com NbCl₅ forneceu dois produtos: o *trans*-álcool-acetato **23** e a *trans*cloridrina **24**, que foram separados por cromatografia em coluna de sílica-gel, eluindo-se com hexano:EtOAc:MeOH, 8:1:1, e caracterizados por métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

Esquema 48

A tabela 8 apresenta os dados das reações do epóxido **7** com NbCl₅ em várias condições.

Massa de NbCl ₅ (mg)	NbCl₅(eq.)	Conversão epóxido, %	Temp. (°C)	Tempo (min.)	Rend. Bruto*, (%)	Prope de prod	orção os utos %
						23	24
135	0,5	100	t.a.	10	81	38	62
33,8	0,125	100	t.a.	30	69	25	75
135	0,5	100	0	30	78	30	70
67,5	0,25	100	0	180	80	27	73
33,8	0,125	100	0	240	86	11	89
135	0,5	0	-78	480	_	—	—

Tabela 8 - Dados das reações do epóxido **7** com NbCl₅ em diferentes condições. Epóxido: 166 mg (1 mmol)

* Baseado no produto em maior proporção.

O epóxido de carvona (**7**), quando comparado ao epóxido de verbenona (**5**) e aos outros epóxidos estudados anteriormente, apresentou-se menos reativo em baixas concentrações de NbCl₅ e em temperaturas muito baixas (-78°C), onde o epóxido praticamente não reagiu.

O epóxido **7** possui um átomo de carbono totalmente substituído, contudo este carbono é α carbinólico, o que desestabiliza o carbocátion terciário que poderia ser formado; o outro átomo de carbono não pode formar um carbocátion estável por ser secundário, desta maneira a estereoquímica *trans* dos produtos formados sugere que o epóxido, ativado pelo ácido de Lewis, reage através de um mecanismo S_N2, sofrendo ataque do íon cloreto (Cl⁻) para formar **24** ou pelo solvente para formar **23** (Esquema 49).

```
Esquema 49
```


Para a correta atribuição dos sinais de RMN de 1H e 13C dos compostos 23 e 24 foram feitos experimentos de RMN 2D (HMQC, COSY e J-resolved) e experimentos de NOEDIFF para a determinação da estereoquímica relativa, os resultados estão apresentados na seção de espectros.

Em seguida realizamos a reação entre o epóxido 8 com NbCl₅ em acetato de etila e à temperatura ambiente, utilizando-se 0,5 equivalente de pentacloreto de nióbio em relação ao epóxido. Após 1 minuto de reação todo epóxido já havia sido consumido, um único produto foi isolado do meio reacional: a 3-hidróxi-cromona (25) em 84% de rendimento, na forma de um sólido amarelo (p.f.=179-180°C; lit.⁴⁶ 181 °C). O composto **25** foi purificado por recristalização usando uma mistura de metanol e hexano como solvente.

A obtenção da 3-hidróxi-cromona (**25**)⁴⁷ a partir do epóxido **8** pode ser explicada pela quebra da ligação carbonooxigênio do epóxido, resultando em um carbocátion secundário estabilizado por ressonância pelo átomo de oxigênio vizinho, e posterior eliminação de H⁺, como apresentado no mecanismo a seguir:

Esquema 51

O composto **25** foi caracterizado através de métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

Os resultados apresentados nas tabelas 1-8 mostram claramente que o NbCl₅, apesar de ser um ácido de Lewis bastante forte em reações com epóxidos, tem sua reatividade diminuída em reações a baixas temperaturas (0°C ou -78°C) e com a diminuição de sua concentração molar, levando a uma maior seletividade nas reações.

4.1.3. Sugestões para Estudos Futuros

Com base nos resultados obtidos até aqui nos estudos sobre abertura de epóxidos utilizando NbCl₅ como ácido de Lewis, acreditamos que estes estudos possam ser estendidos para outros epóxidos, como os apresentados na figura 2, no intuito de se obter um conjunto maior de resultados sobre esta classe de reação promovida por pentacloreto de nióbio.

Figura 2

4.2. Reações de Diels-Alder

Uma pesquisa na literatura revelou-nos algumas indicações do uso de NbCl₅ como ácido de Lewis em reações de Diels-Alder,^{48,49} de tantas aplicações em Síntese Orgânica. Sendo assim, vislumbramos uma possível utilização do NbCl₅ nessas reações, onde poderíamos usar dienos e dienófilos de baixa reatividade e que não reagem entre si na ausência de um ácido de Lewis ou se reagem, necessitam de condições drásticas, como alta pressão.

A figura 3 mostra os dienos e dienófilos que utilizamos para a realização deste estudo.

Figura 3

4.2.1. Reações de Diels-Alder entre Ciclo-Enonas e Ciclopentadieno

Primeiramente a ciclo-enona **28** foi preparada pela reação entre a β -dicetona **27** (representada na sua forma enólica) e anidrido acético em piridina e DMAP, com 2 horas de reação e 72% de rendimento (Esquema 52).

Em seguida a 3-metil-2-ciclo-hexenona (**30**) foi preparada pela reação entre acetoacetato de etila, formaldeído 40% e piperidina por 4 horas, seguida de refluxo por 11 horas com solução aquosa de H_2SO_4 15%.

Esquema 53

As reações das ciclo-enonas com NbCl₅ foram realizadas sob atmosfera de N₂, à temperatura ambiente ou a -78° C e solvente anidro: acetato de etila, diclorometano ou éter etílico. Em todas as reações a proporção ciclo-enona/NbCl₅ foi mantida constante, utilizando-se sempre 0,5 equivalente de NbCl₅ em relação ao dienófilo utilizado e excesso do dieno.⁵⁰⁻⁵⁴

Antes de iniciar os experimentos com NbCl₅, resolvemos realizar a reação entre a 2-ciclo-hexenona (**26**) e o ciclopentadieno (**31**) sem ácido de Lewis, a temperatura ambiente e sob refluxo, em ambos os casos não se verificou a formação de nenhum produto, no caso da tentativa sob refluxo observou-se apenas a formação de polímeros do ciclopentadieno, que é acelerada com o calor.

Em um experimento posterior, agora usando NbCl₅ (0,5 mmol), a reação entre ciclopentadieno (**31**) (2,0 mmols) e a 2-ciclohexenona (**26**) (1,0 mmol), levou à formação do aduto de Diels-Alder *endo* **34** (produto cinético), com rendimento de 42% e um tempo de reação de 180 minutos. Observou-se ainda, a formação de polímeros a partir do ciclopentadieno, onde parte do aduto **34** ficou retido (comprovado por ccd), mesmo depois de se destilar o produto a 49°C (1mmHg), justificando em parte, o baixo rendimento obtido.

Esquema 54

No intuito de otimizar a reação, evitando a formação de polímeros e aumentando o seu rendimento, resolvemos realizar a reação acima nas mesmas condições anteriores, alterando-se apenas a temperatura da reação para - 78°C. Após 90 minutos de reação todo material de partida havia sido consumido, obtendo-se o aduto **34** em 74% de rendimento.

Esquema 55

Um importante aspecto desta reação é a estereoseletividade (apenas o aduto *endo* **34** foi isolado), quando comparado com o uso de $AlCl_3^{55}$ como ácido de Lewis nesta reação, onde ambos adutos *endo* e *exo* são formados.

Normalmente em reações de Diels-Alder os dienos são ativados por grupos doadores de elétrons, enquanto os dienófilos são ativados por grupos retiradores de elétrons, o que deixa sua dupla ligação deficiente de elétrons e com caráter eletrofílico, no caso da 2ciclo-hexenona (**26**), a carbonila que retira elétrons da dupla ligação não é suficiente para deixar a 2-ciclo-hexenona ativada para agir como dienófilo na reação com ciclopentadieno.

Como esperado, o NbCl₅ promoveu a ativação da 2-ciclohexenona (**26**) pela coordenação com o átomo de oxigênio da carbonila, reduzindo a densidade eletrônica da dupla ligação, abaixando a energia do orbital LUMO do dienófilo, diminuindo assim, a energia de ativação e aumentando a interação HOMO_{dieno}-LUMO_{dienófilo}.

Um mecanismo para a formação do aduto de Diels-Alder *endo* **34** é mostrado a seguir.

Esquema 56

Na reação de Diels-Alder, o dieno e o dienófilo podem interagir em duas orientações diferentes, levando a formação dos adutos *endo* e *exo*, porém, freqüentemente o aduto *endo* é favorecido, devido a uma maior superposição dos orbitais π no seu estado de transição.

O aduto **34** foi purificado por cromatografia de coluna em sílica-gel, eluindo-se com hexano:EtOAc:MeOH, 8:1,5:0,5 e caracterizado através de métodos espectroscópicos e espectrométricos (RMN ¹H , RMN ¹³C , IV e CG/EM).

As outras combinações de dienófilos e dienos da figura 3, apesar da forte ativação da ciclo-enona pelo NbCl₅, não forneceram os adutos de Diels-Alder correspondentes.

As ciclo-enonas **27-30** não reagem com ciclopentadieno; apenas a β -cloro-enona **35** ou a β -etóxi-enona **36** foram obtidas

quando estes substratos foram tratados com ciclopentadieno e NbCl₅. Nenhum produto contendo resíduos de ciclopentadieno foi isolado destas reações. De fato, os produtos **35** e **36** foram obtidos, com melhor rendimento, quando as reações foram realizadas na ausência de ciclopentadieno (esquema 57 e tabela 9).

Esquema 57

Ciclo-	Dieno	Solvente	Tempo	Rend.	Prop	orção
Enona			(min.)	Bruto	(%	6)
				(%)	35	36
27	31	Et_2O	60	28	100	0
27	31	CH_2Cl_2	90	36	0	0
27	31	EtOAc	120	40	0	100
28	31	Et_2O	60	30	100	0
28	31	CH_2Cl_2	120	32	100	0
28	31	EtOAc	90	42	0	100
29 ª	31	EtOAc				
30 ª	31	EtOAc				
27		FtaO	20	57	100	0
21		CU C1	20	69	100	0
27			30	08	100	0
27		EtOAc	30	60 ^b	5	95
28		Et_2O	20	68	100	0
28		CH_2Cl_2	20	80	100	0
28		EtOAc	30	83 ^b	15	85

Tabe	la 9 .	Resultados	das	reaçõ	ões das	ciclo	-enonas	27	- 30	com	ou
sem	ciclo	pentadieno	(31)	na	presen	ça do	e NbCl ₅	à	temp	erati	ıra
ambi	ente.										

^a Estes experimentos também foram realizados sob refluxo e sempre na presença de ciclopentadieno; nenhum produto foi obtido mesmo após várias horas de reação.

^b Baseado no produto majoritário

Estes resultados mostram que substituintes na posição β de ciclo-enonas impedem a formação de adutos de Diels-Alder: substituintes oxigenados favorecem a formação de β -cloro-enonas (quando éter etílico ou diclorometano são usados como solventes) ou β -etóxi-enonas (quando acetato de etila é usado como solvente), enquanto o substituinte metila impede que qualquer reação se realize, com o material de partida sendo recuperado no final da reação.

Um método para a preparação de β -cloro-enonas e de β etóxi-enonas pode claramente ser elaborado a partir destes resultados. Um estudo mais completo sobre este tema esta apresentado na seção **4.3.1** desta tese.

4.2.2. Reações de Substituição Eletrofílica no anel Furano

A reação de furano (**32**) ou de 2-metil-furano (**33**) com as ciclo-enonas **26** ou **30** não levou à formação de adutos de Diels-Alder e sim os produtos **37-41** foram obtidos^{51,52} (esquema 58 e tabela 10); nas mesmas condições, o composto **29** não reagiu com o furano (**32**).

Tabela 10. Resultados obtidos nas reações entre as ciclo-enonas **26**, **30** e os furanos **32** e **33**.

Ciclo-	Dieno	Т	Tempo	Rend.	Proporç	ão dos
Enona		(°C)	(min.)	Bruto (%)	Produt	os, %
					37	,
26	32	t.a.	15	33	10	0
26	32	-78	90	37	10	0
					38	39
26	33	t.a.	5	65	23	77
26	33	-78	40	74	95	5
					40	41
30	33	t.a.	300	68	40	60
30	33	-78	600ª	-	100	0

^aDepois de 600 minutos apenas 50% do material de partida havia sido transformado.

Os compostos **37-41** podem ser vistos tanto como produtos da adição conjugada (nucleofilica) do anel furano à cicloenona, ou como produtos da substituição eletrofilica do hidrogênio pela ciclo-enona no anel furano, de acordo com o mecanismo para **26** e **33** mostrado no esquema 59.

O produto **37** é obtido por duas adições consecutivas da 2ciclo-hexenona (**26**) em uma molécula do furano **32**. Já a formação de **39** ou **41** pode ser explicada a partir dos produtos **38** ou **40**, e posterior adição na carbonila de 2 moléculas do 2-metil-furano (**33**).

Os compostos **37-41** foram caracterizados através de métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM).

Os resultados mostraram que o NbCl₅ é um bom ácido de Lewis para promover reações de substituição eletrofilica do hidrogênio pela ciclo-enona no anel furano, pois leva a bons rendimentos e um tempo de reação relativamente curto, principalmente a temperatura ambiente, além do fato da temperatura provocar mudanças consideráveis na composição e proporção dos produtos formados.

Sabendo que o NbCl₅ provoca este tipo de reação, acreditamos que ele possa ser usado em algumas preparações de precursores de produtos naturais, que são preparados pela substituição eletrofilica do hidrogênio pela ciclo-enona no anel furano, e que atualmente utiliza-se outros ácidos de Lewis, como BF₃ eterato. Um exemplo claro é a preparação do ácido nonático,⁵⁶ que constitui a unidade monomérica da Nonactina, um poliéter da classe das Nactinas, que possuem grande interesse pelas suas diversas atividades biológicas, sobretudo pela sua capacidade de agir como transportadores de íons através de membranas biológicas.

49

Ácido Nonático

Em uma das metodologias para a preparação do ácido nonático se utiliza um derivado furânico como precursor, que é preparado por uma reação de substituição eletrofílica do hidrogênio pela ciclo-enona no anel furano e é catalisada por BF₃ eterato, como mostrado abaixo.

Esquema 60

Outra possibilidade de utilização dessa reação é na preparação de octalonas, que são núcleos estruturais de uma série de produtos naturais.

4.2.3. Estudos Teóricos Sobre Reações de Diels-Alder

Como mostrado anteriormente nos estudos envolvendo o uso de NbCl₅ como ácido de Lewis em reações de Diels-Alder utilizando dienófilos de baixa reatividade,⁵¹⁻⁵⁴ como **26**, **42** e **30**, observamos que estes compostos não reagem com ciclopentadieno (**31**) na ausência de um ácido de Lewis forte. Verificamos que as ciclo-enonas **26** e **42** reagem com ciclopentadieno (**31**) na presença de NbCl₅, fornecendo os adutos de Diels-Alder **34** (*endo*) e **43**, **44** (*endo/exo*), respectivamente (Esquema 62). Já quando a ciclo-enona **30** é utilizada como dienófilo nenhum aduto de Diels-Alder é observado, mesmo em refluxo e após várias horas de reação.

A reação entre a ciclo-enona **42** e ciclopentadieno (**31**) foi realizada por outro pesquisador de nosso grupo, que também desenvolve projeto sobre a utilização de NbCl₅ em síntese orgânica. Apenas utilizamos este resultado nos nossos estudos teóricos no intuito de obter um maior número de informações.

No intuito de procurar entender a diferença de reatividade observada entre as ciclo-enonas **26**, **42** e **30** voltamos um pouco de nossa atenção para alguns estudos teóricos, buscando compreender os resultados experimentais (estes estudos foram realizados com a colaboração do Prof. Dr. Sérgio Emannuel Galembeck do Laboratório de Modelagem Molecular-FFCLRP-USP).

No caso de reações como as de Diels-Alder há uma antiga sobre o mecanismo destas discussão reações. As primeiras abordagens⁵⁷ baseavam-se apenas em resultados empíricos culminando no que conhecemos até hoje como regra de Alder. Com a consolidação da teoria de orbitais moleculares, muitas abordagens teóricas a respeito de reações de mecanismo concertado foram surgindo e desde então a reação de Diels-Alder recebeu e têm recebido constante atenção da comunidade científica, especialmente de químicos teóricos que se dedicam ao estudo de reatividade.

Hoje sabemos que várias abordagens mecanísticas são aceitas para a reação de Diels-Alder, como: mecanismo concertado, 1,3-dipolar, radicalar e são discutidos em vários trabalhos da literatura, sendo muitos deles recentes.⁵⁸⁻⁶⁰

No nosso caso resolvemos partir de estudos de FMO, e de grandezas baseadas na teoria funcional de densidade (DFT) que segundo mostrado por vários autores⁶⁰⁻⁶² podem fornecer informações valiosas sobre a reatividade.

Primeiramente as geometrias dos compostos **31**, **26**, **42** e **30** foram otimizadas com o método B3LYP e o conjunto de função de base 6-31G(d,p). Para os complexos formados entre as ciclo-enonas **26**, **42** e **30** e o ácido de Lewis (utilizando AlCl₃ como modelo, pois cálculos com metais de transição ainda apresentam uma grande dificuldade computacional) usamos o mesmo método e base. Com as estruturas otimizadas calculamos as energias dos Orbitais Moleculares de Fronteira (FMO) com o modelo B3LYP/6-311++G(d,p) (tabela 11).

Composto		$\mathbf{E}_{\mathrm{HOMO}}$	E _{LUMO}	(LUMO _{dienófilo}) – (HOMO _{dieno}) (au)	(LUMO _{dienófilo}) – (HOMO _{dieno}) (kcal/mol)
31		-0,2261	-0,0293		· · ·
26	Som áoido	-0,2523	-0,0660	0,1601	100,46
42	Sem acido	-0,2566	-0,0613	0,1648	103,41
30	ue Lewis	-0,2470	-0,0568	0,1693	106,23
26	Com ácido	-0,2882	-0,1366	0,0895	56,16
42	de Lewis	-0,2878	-0,1316	0,0945	59,29
30	(modelo:	-0,2849	-0,1283	0,0978	61,37
	AlCl ₃)				
^a Energias de HOMO e LUMO estão em au.					

Tabela 11 – Energias^a de HOMO e LUMO dos compostos **31**, **26**, **42** e **30**.

Figura 4- Gráfico comparativo das diferenças de energia entre o HOMO do dieno e o LUMO do dienófilo sem e com ácido de Lewis

Como observado na tabela 11 e figura 4 os resultados foram muito interessantes; existe uma grande diferença de energia para quando as ciclo-enonas estão complexadas ou não com ácido de Lewis. Neste caso sabemos que quanto menor a ΔE entre o HOMO da espécie eletrodoadora (π) e o LUMO da espécie eletroaceptora (π), maior é a reatividade. Como podemos ver, as ciclo-enonas sem ácido de Lewis possuem um ΔE muito maior do que quando o ácido de Lewis está complexado ao sistema, isto explica porque as reações só ocorrem na presença de um ácido de Lewis. Também existe uma diferença de energia entre as ciclo-enonas, o que explica a diferença de reatividade entre elas. A ciclo-enona **30**, que não reage mesmo em refluxo, possui um ΔE de 5,21 kcal/mol maior que a ciclo-enona **26**, que reage completamente em 90 minutos. Através das energias de HOMO e LUMO de cada composto podemos também calcular algumas propriedades globais,⁵⁹ o que nos forneceu uma idéia sobre suas reatividades. No caso calculamos o potencial químico eletrônico (μ), a dureza química (η) e a eletrofilicidade global (ω) (tabela 12), o que juntamente com a comparação da diferença de energias entre o HOMO do ciclopentadieno e o LUMO de cada ciclo-enona com ou sem ácido de Lewis (figura 4), nos forneceu resultados valiosos sobre a diferença de reatividade entre as ciclo-enonas.

O potencial químico eletrônico μ de cada composto é \approx E_{HOMO} + E_{LUMO} / 2 e a dureza química $\eta \approx$ E_{LUMO} – E_{HOMO}. A eletrofilicidade global é $\omega = \mu^2/2\eta$ e nos informa sobre a estabilização em termos de energia quando o sistema adquire uma carga eletrônica adicional, ΔN , do meio. Ela pode ser entendida também como o quanto o eletrófilo (receptor eletrônico) está propenso em adquirir uma carga adicional (aproximação do dieno). Um bom eletrófilo é então caracterizado por um alto valor de μ (em módulo) e baixo valor de η . ΔN_{max} é a máxima carga eletrônica que o eletrófilo pode aceitar do meio e pode ser dado por ΔN_{max} = - μ/η

Composto		μ	η	ω	ΔN max
31		-0,1277	0,1968	1,12	0,65
26		-0,1591	0,1863	1,85	0,85
42	Sem ácido de Lewis	-0,1560	0,1893	1,75	0,82
30		-0,1519	0,1902	1,65	0,79
26	Com écido do Lourio	-0,2124	0,1516	4,05	1,40
42	(modelo: AlCla)	-0,2097	0,1562	3,83	1,34
30	(modelo. AlCl3)	-0,2066	0,1566	3,71	1,32
^a Valores de µ	Valores de μ e η estão em au; valores ω estão em eV				

Tabela 12 – Propriedades Globais^a dos compostos 31, 26, 42 e 30.

Como observado na tabela 12 existe uma diferença grande entre os valores obtidos para quando as ciclo-enonas estão

complexadas ou não com o ácido de Lewis. Analisando os resultados observamos que a ciclo-enona **26** (a mais reativa) é a que possui os maiores valores para potencial químico (μ), eletrofilicidade global (ω), ΔN_{max} e menor valor de dureza química (η), características de um bom eletrófilo, explicando sua maior reatividade na reação de Diels-Alder estudada.⁶³

4.2.4. Sugestões para Estudos Futuros

Os estudos envolvendo o uso de NbCl₅ como ácido de Lewis em reações de Diels-Alder serão continuados por outro pesquisador de nosso grupo, que dará continuidade aos estudos usando dienófilos de baixa reatividade e que não reagem com ciclopentadieno na ausência de um ácido de Lewis, como as cicloenonas apresentadas na Figura 5, entre outras.

Figura 5

Para uma maior compreensão dos resultados experimentais os estudos teóricos deverão ter continuidade, no momento encontra-se em andamento estudos que visam à obtenção de propriedades locais (índice de Fukui), o que poderá nos fornecer informações sobre o provável mecanismo desta reação. Também estaremos estudando os estados de transição, o que deverá nos fornecer mais detalhes sobre a reatividade destes compostos.

4.3. Formação de β -Cloro-Enonas e β -Etóxi-Enonas

 β -Cloro-enonas são importantes intermediários em síntese orgânica e são frequentemente utilizadas em reações de espiro-anelações, alquilação e redução. Elas são usualmente preparadas a partir de β -dicetonas através da reação com tricloreto de fósforo, fosgênio, cloreto de acetila, cloreto de tionila, oxi-cloreto de fósforo e cloreto de oxalila.^{63,64}

Sabendo então, que o pentacloreto de nióbio provoca mudanças estruturais em ciclo-enonas com substituintes β oxigenados, decidimos realizar investigações para esclarecer e, possivelmente, desenvolver métodos preparativos baseados nessas modificações. Nossos estudos foram realizados tratando as cicloenonas **27**, **28** e **45-54** (figura 6) com NbCl₅ em vários solventes.⁶⁵⁻⁷⁰

Figura 6

4.3.1. Preparação dos Acetatos Enólicos

Primeiramente os acetatos enólicos **28**, **46**, **48**, **50**, **52** e **54** foram preparados pela reação entre as respectivas β -dicetonas **27**, **45**, **47**, **49**, **51** e **53** (representadas na sua forma enólica) com anidrido acético em piridina e DMAP, à temperatura ambiente, os resultados obtidos estão apresentados na tabela 13.

Tabela 13. Dados das reações de preparação dos acetatos enólicos **28**, **46**, **48**, **50**, **52** e **54**.

β -dicetona	Tempo (h)	Rend. (%)	Produto
27	2	72	28
45	6	65	46
47	6	60	48
49	3	70	50
51	3	68	52
53	2	72	54
Um mecanismo geral para a reação é proposto a seguir:

Esquema 64

4.3.2. Reações das Ciclo-Enonas com NbCl₅

Em seguida as ciclo-enonas **27**, **28** e **45-54** foram tratadas com NbCl₅ em diversos solventes. As reações foram realizadas sob atmosfera de N₂, à temperatura ambiente e com solvente anidro, variando-se a proporção ciclo-enona/NbCl₅ em alguns casos.

Primeiramente a 1,3-ciclo-hexanodiona **27** (representada na sua forma enólica) e o seu derivado acetilado **28** foram tratados com NbCl₅, dando origem à β -cloro-enona **35**, que é o único produto encontrado se o solvente for Et₂O ou CH₂Cl₂. Com o solvente EtOAc, porém, observa-se também a formação de pequena quantidade de **35**, mas o produto principal passa a ser a β -etóxi-enona **36**.

Esquema 65

NDCI5 (C),5 eq.) a	a temperatur	a ampleme.				
Ciclo- enona	NbCl ₅ (eq.)	Cnversão ciclo- enona, %	Solvente	Tempo (min.)	Rend. Bruto ^a %	Produ %	itos, ^b
						35	36
27	0,5	100	Et_2O	20	57	100	0
27	0,5	100	CH_2Cl_2	30	68	100	0
27	0,5	100	EtOAc	30	60	5	95
28	0,5	100	Et_2O	20	68	100	0
28	0,5	100	CH_2Cl_2	20	80	100	0
28	0,5	100	EtOAc	30	83	20	80

Tabela 14. Resultados das reações das ciclo-enonas 27 e 28 com NbCl₅ (0,5 eq.) à temperatura ambiente.

^aBaseado no produto em maior proporção

^bProporção determinada pela integração dos sinais de RMN ¹H

A formação de **36** é observada apenas quando acetato de etila é utilizado como solvente, isto indica que EtOAc não age apenas como solvente, mas também participa da reação, reagindo com o substrato na presença de NbCl₅. O produto **36** foi formado, provavelmente, através de uma reação de substituição por uma etila do solvente.

Já éter e diclorometano mostraram-se inertes, não reagindo com o substrato, levando à formação apenas de **35**, produto da substituição por um íon cloreto (Cl⁻), proveniente do NbCl₅.

As reações das ciclo-enonas 27 e 28 com NbCl₅ também foram realizadas utilizando-se como solvente acetato de iso-propila e acetato de terc-butila (tabela 15).

acetato	de terc-	butila.					
Ciclo- enona	NbCl ₅ (eq.)	Conversão ciclo- enona, %	Solvente	Tempo (min.)	Rend. Bruto ^b %	Produ %	utos, °
27	0,5	38ª	Ac. isopropil a	420	73	35 100	28 0
27	0,5	53ª	Ac. tercbutila	420	70	6	94
28	0,5	100	Ac. isopropil	120	79	100	0
28	0,5	10 ^a	a Ac. tercbutila	420	67	100	0

Tabela 15. Resultados das reações das ciclo-enonas **27** e **28** com NbCl₅ (0,5 eq.) à temperatura ambiente em acetato de iso-propila ou acetato de terc-butila.

^a A reação foi interrompida neste ponto porque a conversão de material de partida em produtos estava já muito lenta.

^b Baseado no produto em maior proporção. Nos casos em que o material de partida foi parcialmente recuperado, o rendimento dos produtos foi calculado considerando apenas a massa de material de partida efetivamente transformado.

[°] Proporção determinada pela integração dos sinais de RMN ¹H

Como observado na tabela 15, o uso de outros ésteres (acetato de iso-propila e acetato de terc-butila) como solvente não levou à formação de éteres enólicos, como quando é usado acetato de etila, onde se obtém a β -etóxi-enona **36**. Em ambas as reações, apenas a β -cloro-enona **35** ou o enol-acetato **28** foram obtidos. As reações em acetato de iso-propila e acetato de terc-butila foram bastante lentas e mesmo após várias horas de reação ainda havia material de partida. Um possível mecanismo para a obtenção do composto **28** a partir de **27** usando acetato de terc-butila como solvente é mostrado a seguir:

Esquema 66

No caso do acetato de iso-propila o carbono secundário também possui um impedimento estérico causado pelas duas metilas, o que impede o ataque de um nucleófilo. Já no acetato de etila o carbono primário pode sofrer ataque de um nucleófilo, o que explica a formação da β -etóxi-enona **36**.

Esquema 67

Já nas reações das ciclo-enonas **27** e **28** com NbCl₅ em acetato de vinila não ocorreu formação de nenhum desses produtos, apenas polímeros foram obtidos.

Em seguida as outras ciclo-enonas foram tratadas com NbCl₅, conforme apresentado nos esquemas 68-72 e tabelas 16-20.

Esquema 68

Tabela	16 .	Resultados	das	reações	das	ciclo-enonas	45	e	46	com
NbCl ₅ à	tem	peratura am	bien	te.						

Ciclo- enona	NbCl ₅ (eq.)	Conversão ciclo- enona, %	Solvente	Tempo (min.)	Rend. Bruto ^b %	Prod %	utos, %
						55	56
45	0,5ª	15	Et_2O	420	60	100	0
45	0,5ª	25	CH_2Cl_2	420	68	100	0
45	0,5ª	50	EtOAc	420	60	0	100
45	2,0	100	Et_2O	360	60	100	0
45	2,0	100	CH_2Cl_2	300	67	100	0
45	1,0	100	EtOAc	300	65	0	100
46	0,5	100	Et_2O	420	69	100	0
46	0,5	100	CH_2Cl_2	420	75	100	0
46	0,5	100	EtOAc	300	80	0	100

^a A reação foi interrompida neste ponto porque a conversão de material de partida em produtos estava já muito lenta.

^b Nos casos em que o material de partida foi parcialmente recuperado, o rendimento dos produtos foi calculado considerando apenas a massa de material de partida efetivamente transformado.

Ciclo- enona	NbCl₅ (eq.)	Conversão ciclo- enona, %	Solvente	Temp o (min.)	Rend. Bruto ^b %	Prod 9	utos, %
				t t		57	58
47	0,5ª	10	Et_2O	420	57	100	0
47	0,5ª	20	CH_2Cl_2	420	65	100	0
47	0,5ª	50	EtOAc	420	65	0	100
47	2,0	100	Et_2O	360	60	100	0
47	2,0	100	CH_2Cl_2	300	60	100	0
47	1,0	100	EtOAc	300	63	0	100
48	0,5	100	Et_2O	420	68	100	0
48	0,5	100	CH_2Cl_2	420	70	100	0
48	0,5	100	EtOAc	300	78	0	100

Tabela 17. Resultados das reações das ciclo-enonas **47** e **48** com NbCl₅ à temperatura ambiente.

^a A reação foi interrompida neste ponto porque a conversão de material de partida em produtos estava já muito lenta.

^b Nos casos em que o material de partida foi parcialmente recuperado, o rendimento dos produtos foi calculado considerando apenas a massa de material de partida efetivamente transformado.

Esquema 70

Tabela 18. Resultados das reações das ciclo-enonas **49** e **50** com NbCl₅ (0,5 eq.) à temperatura ambiente.

Ciclo- enona	NbCl ₅ (eq.)	Conversão ciclo- enona, %	Solvente	Tempo (min.)	Rend. Bruto ,%	Produtos ,%
						59
49	0,5	100	Et_2O	200	60	100
49	0,5	100	CH_2Cl_2	200	60	100
49	0,5	100	EtOAc	240	65	100
50	0,5	100	Et_2O	100	70	100
50	0,5	100	CH_2Cl_2	100	75	100
50	0,5	100	EtOAc	120	79	100

Esquema 71

Tabela 19. Resultados das reações das ciclo-enonas **51** e **52** com NbCl₅ (0,5 eq.) à temperatura ambiente.

Ciclo- enona	NbCl₅ (eq.)	Conversão ciclo- enona, %	Solvente	Tempo (min.)	Rend. Bruto ,%	Produtos, %
						60
51	0,5	100	Et_2O	200	65	100
51	0,5	100	CH_2Cl_2	200	73	100
51	0,5	100	EtOAc	240	71	100
52	0,5	100	Et_2O	100	73	100
52	0,5	100	CH_2Cl_2	100	78	100
52	0,5	100	EtOAc	120	80	100

Esquema 72

Tabela 20. Resultados das reações das ciclo-enonas **53** e **54** com NbCl₅ (0,5 eq.) à temperatura ambiente.

Ciclo- enona	NbCl₅ (eq.)	Conversão ciclo- enona, %	Solvente	Tempo (min.)	Rend. Bruto, ^a %	Produtos, ^b %	
						61	62
53	0,5	100	Et_2O	40	65	100	0
53	0,5	100	CH_2Cl_2	40	68	100	0
53	0,5	100	EtOAc	50	70	20	80
54	0,5	100	Et_2O	30	68	100	0
54	0,5	100	CH_2Cl_2	30	68	100	0
54	0,5	100	EtOAc	40	80	30	70

^aBaseado no produto em maior proporção

^bProporção determinada pela integração dos sinais de RMN ¹H

Como observado nas tabelas 16-20, verificamos que as reações das ciclo-enonas **45-54** com NbCl₅ confirmam os resultados obtidos anteriormente. Observamos que β -cloro-enonas são obtidas quando tratamos ciclo-enonas com NbCl₅ em Et₂O ou CH₂Cl₂, já em EtOAc os produtos formados são β -etóxi-enonas. Contudo, a reação das ciclo-enonas **49** e **51** e seus derivados acetilados **50** e **52** com NbCl₅ em EtOAc não forneceu β -etóxi-enonas e sim β -cloro-enonas.

Para explicar esses resultados podemos propor as seguintes hipóteses:

1.Como já mostrado anteriormente, a ativação das ciclo-enonas para ocorrência dessas reações se dá através da complexação de nióbio com a carbonila:

Esquema 73

2. Se o solvente for acetato de etila, o ácido de Lewis incorpora, antes, acetato de etila; dessa forma, algum acetato de etila está presente no grupo complexante, e é deste acetato de etila que provém a etila que aparece nos produtos **36**, **56**, **58 e 62**:

Esquema 74

3. O produto **A** não se forma, quando R' = CH_3 , porque o grupo complexante contendo acetato de etila não poderia se aproximar do grupo -OR devido o impedimento estérico.

Os compostos **28**, **35**, **36**, **46**, **48**, **50**, **52**, **54** e **55-62** foram caracterizados através de métodos espectroscópicos e espectrométricos (RMN ¹H, RMN ¹³C, IV e CG/EM). Para a correta atribuição dos sinais de RMN de ¹H e ¹³C dos compostos acima foram feitos experimentos de RMN 2D (HMQC, COSY e *J*-resolved).

4.3.3. Estudos de RMN das Ciclo-Enonas

No intuito de obter informações a respeito do provável mecanismo da reação de formação de β -cloro-enonas e β -etóxienonas a partir de ciclo-enonas com substituintes β oxigenados realizamos estudos de RMN das ciclo-enonas não simétricas **53**, **54** e dos produtos da reação com NbCl₅ **61** e **62**. As análises dos espectros de RMN 2D [¹H, ¹³C-HMBC] (Correlação carbonohidrogênio a longa distância, ²J, ³J e ⁴J) forneceu a correta posição (entre as duas possibilidades) dos grupos enol, acetato, cloreto e etil nestes compostos. Os resultados estão apresentados nas figuras 7-11 e tabela 21.

Figura 7. Espectro de RMN 2D [¹H, ¹³C-HMBC) do composto (53)

Figura 8. Espectro de RMN 2D [1H, 13C-HMBC) do composto (54)

Pentacloreto de Nióbio como Ácido de Lewis em Síntese Orgânica

Figura 9. Espectro de RMN 2D [¹H, ¹³C-HMBC) do composto (61)

Pentacloreto de Nióbio como Ácido de Lewis em Síntese Orgânica

Composto	¹ H (ppm)	Correlações ¹³ C Observadas	Hidrogêni
			0
53			
	1,15	C-6, C-5, C-4	CH ₃ -(7)
	1,82	C-7, C-3, C-5, C-2, C-6	H-4
	2,46	C-4, C-5, C-1, C-2	H-3
54	,		
	1,13	C-6, C-5, C-4	CH ₃ -(7)
	1,87	C-7, C-3, C-5, C-2, C-6	H-4
	2,56	C-4, C-5, C-1, C-2	H-3
61			
	1,12	C-6, C-5, C-4	CH ₃ -(7)
	1,89	C-7, C-3, C-5, C-2, C-6	H-4
	2,70	C-4, C-5, C-1, C-2	H-3
62			
	1,11	C-6, C-5, C-4	CH ₃ -(7)
	1,80	C-7, C-3, C-5, C-2, C-6	H-4
	2,43	C-4, C-5, C-1, C-2	H-3

Tabela 21. Correlações ¹H-¹³C observadas nos espectros de HMBC dos compostos **53**, **54**, **61** e **62**.

Figura 11. Posições corretas dos grupos enol, acetato, cloreto e etil nos compostos 53, 54, 61 e 62

Com base nestas informações propomos os mecanismos abaixo para formação de β -cloro-enonas e β -etóxi-enonas a partir de ciclo-enonas com substituintes β oxigenados na presença de NbCl₅.

Esquema 75. Mecanismo proposto para formação de β -cloro-enonas e β -etóxi-enonas

4.3.4. Sugestões para Estudos Futuros

No intuito de acumular um maior número de resultados os estudos de RMN poderá ser feito para outras ciclo-enonas não simétricas, como as apresentadas abaixo:

5. Conclusão

5. CONCLUSÃO

Os estudos envolvendo o uso de NbCl₅ como ácido de Lewis em reações de abertura de epóxidos mostram claramente que o NbCl₅, apesar de ser um ácido de Lewis bastante forte em reações com epóxidos, levando-se geralmente à formação de mais de um produto (cloridrinas, 1,2-dióis, produtos contendo resíduos de solvente, como também produtos de rearranjo foram obtidos), pode apresentar seletividade satisfatória quando devidamente controlado pelo abaixamento da temperatura e/ou da concentração molar.

Com relação aos estudos sobre o uso de NbCl₅ como ácido de Lewis em reações de Diels-alder, em um caso, NbCl₅ mostrou ser um bom ácido de Lewis para promover reações de Diels-Alder, resultando em uma maior estereoseletividade quando comparado com AlCl₃. Quando dienos menos reativos e/ou ciclo-hexenonas β substituídas foram usadas, nenhum aduto de Diels-Alder foi obtido. Furano (**32**) e 2-metil-furano (**33**) levaram à formação de produtos de substituição eletrofílica com ciclo-hexenona (**26**) ou 3-metil-ciclohexenona (**30**). A β -dicetona (**27**) e seu derivado acetilado (**28**) reagiram com NbCl₅ formando a β -cloro-enona **35** ou a β -etóxi-enona **36**, dependendo do solvente usado; a adição de ciclopentadieno (**31**) não resultou na alteração destes resultados.

NbCl₅ mostrou ser um bom reagente para promover a transformação de β -dicetonas e seus derivados acetilados em β -cloroenonas e β -etóxi-enonas, dependendo do solvente utilizado, em uma única etapa e em bons rendimentos. Em reações realizadas em Et₂O ou CH₂Cl₂ como solventes, apenas β -cloro-enonas são formadas. Contudo, usando EtOAc como solvente, os resultados dependem da estrutura do substrato: substratos α -metilados formam exclusivamente β -cloro-enonas como nos outros solventes, enquanto os outros substratos levam à formação de β -cloro-enonas e β -etóxienonas ou exclusivamente β -etóxi-enonas.

6. Seção de Espectros

6. SEÇÃO DE ESPECTROS

Nesta seção a numeração dos átomos de carbono dos compostos, não segue nenhuma norma ou recomendação oficial. O objetivo desta numeração é facilitar a identificação dos átomos de carbono e hidrogênio nas discussões dos espectros.

A nomenclatura dos compostos segue as regras da IUPAC que possui uma numeração diferente da utilizada nesta seção.

Dada a proximidade dos deslocamentos químicos de RMN ¹³C para átomos de carbono numa mesma molécula, usamos simbolicamente asteriscos com o objetivo de chamar a atenção para a incerteza na atribuição do deslocamento químico, ou seja, átomos de carbono com o mesmo número de asteriscos podem ter os deslocamentos químicos trocados.

Para a atribuição dos sinais espectrais foram consultadas tabelas e livros textos segundo as referências abaixo:

RMN ¹ H	Refs.: 71,72, 73 e 78
RMN ¹³ C	Refs.: 71, 72, 74-76
IV	Refs.: 71 e 72
EM	Refs.: 71, 72 e 77.

Composto (1)

Espectro de RMN ¹H do composto (1)

Tabela 22 – Dados espectrais de RMN ¹H do composto 1 (CDCl₃).

δ (ppm)	Atribuição	sinal	J (Hz)
2,93	H-1	dd	<i>J</i> ₁ =1,1 e <i>J</i> ₂ =0,9
2,50	Η-5α	dd	<i>J</i> ₁ =13,4 e <i>J</i> ₂ =0,9
1,97	Η-3α	dt	J_1 =15,0; J_2 =0,9
1,69	Η-5β	ddd	<i>J</i> ₁ =13,4; <i>J</i> ₂ =2,2 e <i>J</i> ₃ =1,1
1,59	Η-3β	dd	<i>J</i> ₁ =15,0 e <i>J</i> ₂ =2,2
1,31	H-7 (CH ₃)	S	
0,91	H-9 (CH ₃)	S	
0,80	H-8 (CH ₃)	S	

Tabela 23 – Dado	s espectrais	de RMN ¹³ C	${}^{1}H$ do	composto 1	$(CDCl_3).$
------------------	--------------	------------------------	--------------	------------	-------------

δ (ppm)	Atribuição
207,7	C_6
64,0	C_2
61,2	C_1
47,8	C_5
42,5	C_3
35,9	C4
30,6	C9
27,6	C_8
23,8	C ₇

Espectro de RMN ¹³C (DEPT-135) do composto (1)

Tabela 24 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **1** (CDCl₃).

δ (ppm)	Atribuição
61,2	C_1
47,8	C_5
42,5	C_3
30,6	C ₉
27,6	C_8
23,8	C ₇

Composto (2)

Espectro de RMN ¹H do composto (2)

Tabela 25 – Dados espectrais de RMN ¹H do composto 2 (CDCl₃).

	I		(\$)
δ (ppm)	Atribuição	Sinal	J (Hz)
3,11	H-1 e H-2	S	
1,94	H-3 e H-6*	m	
1,81	H-3' e H-6'*	m	
1,43	H-4 e H-5**	m	
1,23	H-4' e H-5'**	m	

* Podem estar trocados

** Podem estar trocados

Tabela 26 – I	Dados esp	oectrais d	de RMN	$^{13}C{^{1}H}$	do com	posto 2 (CDCl ₃).
----------------------	-----------	------------	--------	-----------------	--------	------------------	----------------------

δ (ppm)	Atribuição
52,1	$C_1 e C_2$
24,5	$C_3 e C_6$
19,5	$C_4 e C_5$

Tabela 27 – Dados espectrais de RMN ¹³C (DEPT-135) do composto 2 $(CDCl_3).$

δ (ppm)	Atribuição
52,1	$C_1 e C_2$
24,5	$C_3 e C_6$
19,5	$C_4 e C_5$

82

Composto (3b)

Espectro de RMN ¹H do composto (3b)

Tabela 28 – Dados	espectrais of	ie RMN ¹ H do	composto 3b	$(CDCl_3).$
-------------------	---------------	--------------------------	--------------------	-------------

δ (ppm)	Atribuição	Sinal	J (Hz)
1,52	H-2; H-3; H-4; H-5	m	
	е Н-б		
1,20	H-7 (CH ₃)	S	

83

Espectro de RMN ${}^{13}C{}^{1}H$ do composto (3b)

Tabela 29 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **3b** (CDCl₃).

δ (ppm)	Atribuição
69,9	C1
39,4	$C_2 e C_6$
29,5	C_7
25,6	C_4
22,7	$C_3 e C_5$

Tabela 30 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **3b** (CDCl₃).

δ (ppm)	Atribuição
39,4	$C_2 e C_6$
29,5	C_7
25,6	C_4
22,7	$C_3 e C_5$

Composto (3c)

Espectro de RMN ¹H do composto (3c)

Tabela 31 – Dados espectrais de RMN ¹H do composto **3c** (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)	
5,38	H-2	m		
1,96	H-3*	m		
1,89	H-6*	m		
1,63	H-7 (CH ₃)	S		
1,61	H-4**	m		
1,54	H-5**	m		

*Podem estar trocados

**Podem estar trocados

Espectro de RMN ¹³C{¹H} do composto (3c)

Tabela 32 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **3c** (CDCl₃).

δ (ppm)	Atribuição
134,1	C1
121,2	C_2
30,1	C_6
25,4	C_3
24,0	C_7
23,1	C ₄
22,5	C ₅

Espectro de RMN ¹³C (DEPT-135) do composto (3c)

Tabela 33 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **3c** (CDCl₃).

δ (ppm)	Atribuição
121,2	C2
30,1	C_6
25,4	C_3
24,0	C_7
23,1	C4
22,5	C_5

> Composto (3)

Espectro de RMN ¹H do composto (3)

Tabela 34 – Dados espectrais de RMN ¹H do composto 3 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
2,96	H-2	dt	<i>J</i> ₁ =3,5 e <i>J</i> ₂ =1,3
1,88	H-6* e H-3*	m	
1,67	Н-б'*	ddd	<i>J</i> ₁ =14,6; <i>J</i> ₂ =8,1 e <i>J</i> ₃ =5,6
1,42*	H-4** e H-5**	m	
1,30	H-7 (CH ₃)	S	
1,19*	H-4'** e H-5'**	m	

*Podem estar trocados

**Podem estar trocados

Tabela 35 – Dados espectrais de RMN ¹³C{¹H} do composto **3** (CDCl₃).

δ (ppm)	Atribuição
59,6	C_2
57,6	C_1
29,9	C_6
24,8	C_3
24,0	C_7
20,0	C_4
19,7	C5

Tabela 36 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **3** (CDCl₃).

δ (ppm)	Atribuição
59,6	C_2
29,9	C_6
24,8	C_3
24,0	C_7
20,0	C_4
19,7	C_5

> Composto (4)

Espectro de RMN ¹H do composto (4)

Tabela 37 – Dados espectrais de RMN ¹H do composto 4 (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
3,04	H-2	dd	<i>J</i> ₁ =4,0 e <i>J</i> ₂ =2,5
2,04	Η-5β	ddd	<i>J</i> ₁ =10,0; <i>J</i> ₂ =5,0 e <i>J</i> ₃ =2,0
2,02	Η-3α	ddd	<i>J</i> ₁ =13,0; <i>J</i> ₂ =9,0 e <i>J</i> ₃ =2,0
1,91	H-6	t	J=5,0
1,79	Η-3β	ddd	<i>J</i> ₁ =13,0; <i>J</i> ₂ =5,0 e <i>J</i> ₃ =4,0
1,72	H-4	m	
1,63	Η-5α	d	<i>J</i> =10,0
1,32	H-10 (CH ₃)	S	
1,29	H-8 (CH ₃)	S	
0,94	H-9 (CH ₃)	S	

Espectro de RMN ${}^{13}C{}^{1}H{}$ do composto (4)

Tabela 38 – Dados espectrais de RMN ${}^{13}C$ { ${}^{1}H$ } do composto **4** (CDCl₃).

δ (ppm)	Atribuição
59,6	C1
56,2	C_2
44,7	C_6
40,1	C_7
39,3	C_4
27,2	C_3
26,3	C_8
25,4	C_5
22,0	C_{10}
19,7	C ₉

Tabela 40 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **4** (CDCl₃).

δ (ppm)	Atribuição
56,2	C_2
44,7	C_6
39,3	C_4
27,2	C_3
26,3	C_8
25,4	C_5
22,0	C_{10}
19,7	C ₉

Tabela 41-	Dados esp	ectrais de l	NOEDIFF do	composto 4	$(CDCl_3)$
------------	-----------	--------------	------------	-------------------	------------

δ (ppm)- Irradiado	Atribuição	Efeito NOE observado
3,04	H-2	H-3β; H-10 (CH ₃) e H-9 (CH ₃)
1,63	Η-5α	Η-5β
1,32	H-10 (CH ₃)	H-2; H-6; H-5β e H-9 (CH ₃)
1,29	H-8 (CH ₃)	H-4; H-5β; H-6 e H-9 (CH ₃)
0,94	H-9 (CH ₃)	H-2; H-3β; H-10 (CH ₃) e H-8
		(CH ₃)

Pentacloreto de Nióbio como Ácido de Lewis em Síntese Orgânica
> Composto (5)

Espectro de RMN ¹H do composto (5)

Tabela 42 – Dados espectrais de RMN ¹H do composto **5** (CDCl₃).

δ (ppm)	Atribuição	sinal	J (Hz)
3,17	H-2	d	<i>J</i> =1,8
2,44	H-4	td	<i>J</i> ₁ =6,0 e <i>J</i> ₂ =1,8
2,33	H-6	t	J=6,0
2,29	Η-5α	dt	<i>J</i> ₁ =10,1 e <i>J</i> ₂ =6,0
2,07	Η-5β	d	<i>J</i> =10,1
1,51	H-10 (CH ₃)	S	
1,43	H-8 (CH ₃)	S	
1,02	H-9 (CH ₃)	S	

Espectro de RMN ${}^{13}C{}^{H}$ do composto (5)

Tabela 43 – Dados espectrais de RMN $^{13}C{}^{1}H{}$ do compos	ito 5	(CDCl ₃)
--	-------	----------------------

δ (ppm)	Atribuição
206,2	C ₃
59,9	C_1
58,9	C_2
56,5	C_4
49,8	C_7
45,7	C_6
26,5	C_8
21,7	C_5
21,6	C ₉
20,9	C_{10}

Espectro de RMN ¹³C (DEPT-135) do composto (5)

Tabela 44 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **5** (CDCl₃).

δ (ppm)	Atribuição
58,9	C_2
56,5	C ₄
45,7	C_6
26,5	C_8
21,7	C_5
21,6	C9
20,9	C ₁₀

Tabela 45-	Dados es	pectrais	de	NOEDIFF	do	com	posto	5 ((CDCl ₃)
				-				-	01

δ (ppm)- Irradiado	Atribuição	Efeito NOE observado
3,17	H-2	H-9 (CH ₃) e H-10 (CH ₃)
1,51	H-10 (CH ₃)	H-2 e H-6
1,43	H-8 (CH ₃)	H-4 e H-6 e H-5α
1,02	H-9 (CH ₃)	H-2 e H-4

> Composto (6)

Tabela 46 – Da	dos espectrais	RMN 1H do	composto 6	(CDCl ₃)
----------------	----------------	-----------	-------------------	----------------------

δ (ppm)	Atribuição	Sinal	J (Hz)
2,77	H-10	d	<i>J</i> =4,8
2,61	H-10'	d	<i>J</i> =4,8
2,28	H-5	dtd	<i>J</i> ₁ =10,3; <i>J</i> ₂ = <i>J</i> ₃ =5,6 e <i>J</i> ₄ =1,5
2,16	H-2	ddd	<i>J</i> ₁ =15,0; <i>J</i> ₂ =10,3 e <i>J</i> ₃ =8,3
1,99	H-4	tdd	<i>J</i> ₁ =5,6 e <i>J</i> ₂ =4,3 e <i>J</i> ₃ =1,5
1,74	H-3 e H-3'	m	
1,69	H-2'	ddd	<i>J</i> ₁ =15,0; <i>J</i> ₂ =8,3 e <i>J</i> ₃ =1,5
1,66	H-5'	d	<i>J</i> =10,3
1,52	H-6	t	<i>J</i> =5,6
1,25	H-8* (CH ₃)	S	
0,93	H-9 *(CH ₃)	S	

* Podem estar trocados

Tabela 47 – Dados espectrais RMN ¹³ C { ¹ H} do composto 6 (CD	$Cl_3)$
--	---------

δ (ppm)	Atribuição
61,9	C_1
56,8	C ₁₀
49,3	C_6
41,1	C ₇
40,5	C_4
26,5	C_8
25,6	C_5
23,9	C_2
22,7	C_3
21,6	C9

* Podem estar trocados

Espectro de RMN ¹³C (DEPT-135) do composto (6)

Tabela 48 – Dados espectrais	RMN	¹³ C	(DEPT-135)	do composto 6
(CDCl ₃)				_

δ (ppm)	Atribuição
56,8	C ₁₀
49,3	C_6
40,5	C_4
26,5	C_8
25,6	C_5
23,9	C_2
22,7	C_3
21,6	C ₉

* Podem estar trocados

> Composto (7)

Espectro de RMN ¹H do composto (7)

Tabela 49 – Dados espectrais de RMN ¹H do composto 7 (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
4,79	H-8a	m	
4,72	H-8b	m	
3,45	H-6	dd	$J_1=3,0; J_2=1,3$
2,72	H-4	tt	<i>J</i> ₁ =11,5 e <i>J</i> ₂ =4,6
2,59	Η-3β	ddd	<i>J</i> ₁ =17,6; <i>J</i> ₂ =4,6 e <i>J</i> ₃ =1,3
2,37	Η-5β	ddddd	<i>J</i> ₁ =14,6; <i>J</i> ₂ =4,6; <i>J</i> ₃ =3,0; <i>J</i> ₄ =1,3 e
			<i>J</i> ₅ =0,8
2,03	Η-3α	ddd	<i>J</i> ₁ =17,6; <i>J</i> ₂ =11,5 e <i>J</i> ₃ =0,8
1,91	Η-5α	ddd	<i>J</i> ₁ =14,6; <i>J</i> ₂ =11,5 e <i>J</i> ₃ =1,3
1,70	H-9 (CH ₃)	m	
1,39	H-10 (CH ₃)	S	

Espectro de RMN ${}^{13}C{}^{1}H{}$ do composto (7)

Pentacloreto de Nióbio como Ácido de Lewis em Síntese Orgânica

Tahela	50 -	Dados	espectrais	de	RMN	13 C {1H	ob <i>l</i>	composto	7	(CDC)	(12)
Iavcia	<u> </u>	Dauos	concutato	ue	IVININ	- ° U (-11	li uu	COMPOSIC	, ,		131.

δ (ppm)	Atribuição
205,8	C_2
146,7	C_7
110,9	C_8
61,7	C_6
59,2	C_1
42,2	C_3
35,4	C_4
29,1	C_5
20,1	C ₉
15,7	C_{10}

Espectro de RMN ¹³C (DEPT-135) do composto (7)

Tabela 51 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **7** (CDCl₃).

δ (ppm)	Atribuição
110,9	C ₈
61,7	C_6
42,2	C_3
35,4	C_4
29,1	C_5
20,1	C 9
15,7	C ₁₀

Tabela 52 - Dados espectrais de NOEDIFF do composto 7 (CDCl ₃
---	-------------------

Irradiado		
3,45	H-6	H-5α > H-5β; H-10 (CH ₃)
2,72	H-4	H-3β; H-5β e H-8b
2,59	Η-3β	Η-3α
2,37	Η-5β	H-5α; H-6 e H-4
2,03	Η-3α	H-3β; H-4; H-8b; H-9 (CH ₃) > H-10 (CH ₃)
1,91	Η-5α	H-5β; H-6 e H-8b
1,70	H-9 (CH ₃)	H-8a > H-8b e H-6
1,39	H-10 (CH ₃)	H-6 e H-5α

Composto (8)

Espectro de RMN ¹H do composto (8)

Tabela 53 – Dados espectrais de RMN ¹H do composto **8** (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
7,92	H-9	dd	<i>J</i> ₁ =8,0 e <i>J</i> ₂ =1,7
7,59	H-7	ddd	<i>J</i> ₁ =8,4; <i>J</i> ₂ =7,1 e <i>J</i> ₃ =1,7
7,18	H-8	ddd	<i>J</i> ₁ =8,0; <i>J</i> ₂ =7,1 e <i>J</i> ₃ =1,0
7,08	H-6	dd	<i>J</i> ₁ =8,4 e <i>J</i> ₂ =1,0
5,69	H-1	d	<i>J</i> =2,4
3,73	H-2	d	<i>J</i> =2,4

Espectro de RMN ${}^{13}C{}^{1}H$ do composto (8)

Tabela 54 – Dados espectrais de RMN ¹³ C{ ¹ H} do composto 8 (CDCl	з).
--	-----

δ (ppm)	Atribuição
188,2	C ₃
155,4	C_5
136,3	C_7
127,2	C ₉
123,4	C_8
119,8	C_4
118,0	C_6
77,3	C_1
55,4	C_2

Espectro de RMN ¹³C (DEPT-135) do composto (8)

Tabela 55 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **8** (CDCl₃).

δ (ppm)	Atribuição
136,3	C ₇
127,2	C ₉
123,4	C_8
118,0	C_6
77,4	C_1
55,4	C_2

> Composto (9):

Espectro de RMN ¹H do composto (9)

Tabela 56–Dados Espectrais de RMN ¹H do composto 9 (CDCl₃)

δ (ppm)	Atribuição	Sinal	J (Hz)
9,48	H-6	S	
2,60	Η-4α	dd	<i>J</i> ₁ =13,7 e <i>J</i> ₂ =1,1
2,25	Η-2β	d	<i>J</i> =17,2
2,17	H-2a	dd	<i>J</i> ₁ =17,2 e <i>J</i> ₂ =1,1
1,61	Η-4β	d	<i>J</i> =13,7
1,36	H-7 (CH ₃)	S	
1,17	H-9(CH ₃)	S	
1,03	H-8(CH ₃)	S	

Espectro de RMN ${}^{13}C{}^{1H}$ do composto (9)

Tabela 57 – Dados Espectrais de ¹³ C{ ¹ H} do composto 9 (CDC	13)
---	-----

δ (ppm)	Atribuição
215,3	C_1
198,7	C_6
63,1	C_5
53,1	C_2
44,2	C_4
33,8	C_3
29,6	C9
28,9	C_8
21,2	C_7

Espectro de RMN ¹³C (DEPT-135) do composto (9)

Tabela 58 – Dados Espectrais de RMN ¹³C (DEPT-135) do composto **9** (CDCl₃)

δ (ppm)	Atribuição
198,7	C ₆
53,1	C_2
44,2	C_4
29,6	C_9
28,9	C_8
21,2	C ₇

> Composto (10)

Espectro de RMN ¹H do composto (10)

Tabela 59 - Dad	os Espectrais	de RMN ¹ H do	composto 10	(CDCl ₃)
-----------------	---------------	--------------------------	--------------------	----------------------

δ (ppm)	Atribuição	Sinal	J (Hz)
6,01	OH	sl	
2,34	Н-б	S	
2,24	H-4	S	
1,88	H-7 (CH ₃)	S	
1,05	H-8 (CH ₃) e H-9 (CH ₃)	S	

Espectro de RMN ${}^{13}C{}^{1}H$ do composto (10)

Tabela 60 –	Dados	Espectrais d	e 13C{1H}	do composto	10	$(CDC1_3)$
I UNCIU OO	Daaoo	Lopectiano e	(C - C) = I		TO	

δ (ppm)	Atribuição
194,1	C1
143,0	C_2
127,9	C_3
49,3	C_6
44,7	C_4
33,5	C_5
28,4	C ₈ e C ₉
17,1	C_7

Espectro de RMN ¹³C (DEPT-135) do composto (10)

Tabela 61 – Dados Espectrais de RMN ¹³C (DEPT-135) do composto **10** (CDCl₃).

δ (ppm)	Atribuição
49,3	C_6
44,7	C4
28,4	$C_8 e C_9$
17,1	C ₇

Composto (11)

Espectro de RMN ¹H do composto (11)

Tabela 62 – Dados	Espectrais	de RMN ¹ H d	lo composto 11	(CDCl ₃)
-------------------	------------	-------------------------	-----------------------	----------------------

δ (ppm)	Atribuição	Sinal	J (Hz)
3,73	H-2	ddd	<i>J</i> ₁ =11,5; <i>J</i> ₂ =9,3 e <i>J</i> ₃ =4,5
3,51	H-1	ddd	<i>J</i> ₁ =10,2; <i>J</i> ₂ =9,3 e <i>J</i> ₃ =4,5
2,58	OH	sl	
2,23	H-6*	m	
2,11	H-3*	m	
1,73	H-5**, H-6'*	m	
1,11	H-4**, H-3'*	m	
2,23 2,11 1,73 1,11	н-6^ H-3* H-5**, H-6'* H-4**, H-3'*	m m m m	

* Podem estar trocados.

** Podem estar trocados.

Espectro de RMN ¹³C{¹H} do composto (11)

Tabela 63 – Dados Espectrais de ¹³C{¹H} do composto **11** (CDCl₃)

δ (ppm)	Atribuição
75,4	C_2
67,6	C_1
35,2	C_6 *
33,1	C ₃ *
25,7	C5**
24,0	C4**

* Podem estar trocados.

** Podem estar trocados.

Espectro de RMN ¹³C (DEPT-135) do composto (11)

Tabela 64 – Dados Espectrais de RMN ¹³C (DEPT-135) do composto **11** (CDCl₃)

δ (ppm)	Atribuição
75,7	C_2
67,9	C_1
35,5	C_6 *
33,5	C ₃ *
26,1	C5**
24,4	C4**

* Podem estar trocados.

** Podem estar trocados.

> Composto (12)

Espectro de RMN ¹H do composto (12)

Tabela 65 -	Dados Espectrais	de RMN 1H do	composto 12	$(CDC1_2)$
$1 a \beta c \alpha = 00$	Dauus Especiais	$u \cup I \cup I \cup U \cup U$		

δ (ppm)	Atribuição	Sinal	J (Hz)
4,57	H-1	ddd	<i>J</i> ₁ =10,3 e <i>J</i> ₂ =8,9; <i>J</i> ₃ =4,8
	_		
3,54	H-2	ddd	<i>J</i> ₁ =10,4 e <i>J</i> ₂ =8,9; <i>J</i> ₃ =4,8
2,77	OH	sl	
2,08	H-8 (CH ₃)	S	
2,01	H-6*	m	
1,71	H-3*	m	
1,31	H-4 e H-5	m	

* Podem estar trocados.

Espectro de RMN ¹³C{¹H} do composto (12)

Tabela 66 – Dados Espectrais de RMN ${}^{13}C{}^{1}H$ do composto **12** (CDCl₃)

δ (ppm)	Atribuição
171,3	C ₇
77,9	C_1
72,3	C_2
32,9	C_3
29,8	C_6
23,7	C_5^*
23,6	C_4 *
21,2	C_8

*Podem estar trocados.

Espectro de RMN ¹³C (DEPT-135) do composto (12)

Tabela 67 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **12** (CDCl₃).

δ (ppm)	Atribuição
77,9	C1
72,3	C_2
32,9	C_3
29,8	C_6
23,7	C_5 *
23,6	C4*
21,2	C_8

*Podem estar trocados.

Composto (13)

Espectro de RMN ¹H do composto (13)

Tabela	68 –	Dados	espectrais	de	RMN ¹ H	do	composto	13	$(CDC1_3)$
Tabela		Dauos	copectians	uc	1/1/11/ 11	uu	Composito	TO	ICDCI31

δ (ppm)	Atribuição	Sinal	J (Hz)
3,77	H-2	dd	<i>J</i> ₁ =9,5 e <i>J</i> ₂ =4,3
2,57	OH	sl	
2,11	H-6*	m	
1,91	H-3* e H-6'	m	
1,67	H-3'*, H-4**	m	
1,57	H-7 (CH ₃)	S	
1,40	H-5**, H-4'**	m	

* Podem estar trocados

** Podem estar trocados

Espectro de RMN ¹³C{¹H} do composto (13)

Tabela 69 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **13** (CDCl₃).

δ (ppm)	Atribuição
77,1	C_2
76,4	C_1
40,7	C_6
30,1	C_3
23,3	C_5 *
23,2	C_4 *
22,8	C_7

*Podem estar trocados

Espectro de RMN ¹³C (DEPT-135) do composto (13)

Tabela 70 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **13** (CDCl₃).

δ (ppm)	Atribuição
77,1	C_2
40,7	C_6
30,1	C_3
23,3	C_5 *
23,2	C4*
22,8	C ₇

*Podem estar trocados

Composto (14)

Espectro de RMN ¹H do composto (14)

Fabela 71 -	- Dados	espectrais de	RMN ¹ H	do composto	14	$(CDC1_3)$.
	Daaoo		<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			

δ (ppm)	Atribuição	Sinal	J (Hz)
3,48	H-2	m	
1,86	H-3*	m	
1,74	H-3'* e H-6*	m	
1,62	H-4**	m	
1,33	H-4'** e H-5**	m	
1,20	H-7 (CH ₃)	S	

*Podem estar trocados

**Podem estar trocados

Espectro de RMN ¹³C{¹H} do composto (14)

Tabela 72 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **14** (CDCl₃).

δ (ppm)	Atribuição
77,3	C2
73,9	C_1
38,6	C_6
31,0	C ₃
24,0	C_5
23,3	C_4
19,7	C ₇

Espectro de RMN ¹³C (DEPT-135) do composto (14)

Tabela 73 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **14** (CDCl₃).

δ (ppm)	Atribuição
77,3	C2
38,6	C_6
31,0	C_3
24,0	C_5
23,3	C_4
19,7	C ₇

> Composto (15)

Espectro de RMN ¹H do composto (15)

Tabela 74 – Dados espectrais de RMN ¹H do composto 15 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
9,80	H-7	t	J=2,5
5,24	H-2	ddq	J ₁ =2,4; J ₂ =2,0 e J ₃ =1,8
2,53	H-6	ddd	J ₁ =15,5; J ₂ = 4,0 e J ₃ =2,5
2,40	H-3 e H-6'	m	
2,31	H-3'	m	
1,89	H-4	dtd	J ₁ =4,0; J ₂ =2,5 e J ₃ =1,8
1,62	H-10 (CH ₃)	m	
1,00	H-8* (CH ₃)	S	
0,79	H-9* (CH ₃)	S	

* Podem estar trocados

Espectro de RMN ¹³C{¹H} do composto (15)

Tabela 75 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **15** (CDCl₃).

δ (ppm)	Atribuição
203,1	C ₇
148,0	C_1
121,6	C_2
46,9	C_5
45,1	C_6
44,2	C_4
35,5	C_3
25,6	C_8^*
20,0	C_9^*
12,6	C ₁₀

*Podem estar trocados

Espectro de RMN ¹³C (DEPT-135) do composto (15)

Tabela 76 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **15** (CDCl₃).

δ (ppm)	Atribuição
203,1	C ₇
121,6	C_2
45,1	C_6
44,2	C_4
35,5	C_3
25,6	C_8^*
20,0	C_9^*
12,6	C_{10}

*Podem estar trocados

Composto (16)

Espectro de RMN ¹H do composto (16)

Tabela 77 – Dados espectrais de RMN ¹H do composto 16 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
5,56	H-6	dquint	<i>J</i> ₁ =4,5 e <i>J</i> ₂ =1,5
4,06	H-2	t	<i>J</i> =3,5
2,23	H-3	dddd	<i>J</i> ₁ =14,2; <i>J</i> ₂ =7,0; <i>J</i> ₃ =3,5 e
			<i>J</i> ₄ =1,5
2,10	H-5	ddt	<i>J</i> ₁ =13,4; <i>J</i> ₂ = 4,5 e <i>J</i> ₃ =1,5
1,90	H-4, H3' e H5'	m	
1,79	H-10 (CH ₃)	S	
1,60	H-8* (CH ₃)	S	
1,56	H-9* (CH ₃)	S	

* Podem estar trocados

Espectro de RMN ${}^{13}C{}^{1}H$ do composto (16)

Tabela 78 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **16** (CDCl₃).

δ (ppm)	Atribuição
134,6	C_1
125,2	C_6
74,3	C_7
68,9	C_2
40,7	C_4
33,9	C_3
31,1	C_8 *
30,7	C9*
28,0	C_5
21,2	C_{10}

*Podem estar trocados

Espectro de RMN ¹³C (DEPT-135) do composto (16)

Tabela 79 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **16** (CDCl₃).

δ (ppm)	Atribuição
125,2	C_6
68,9	C_2
40,7	C_4
33,9	C_3
31,1	C_8 *
30,7	C9*
28,0	C_5
21,2	C ₁₀

*Podem estar trocados

Composto (17)

Espectro de RMN ¹H do composto (17)

Tabela 80 – Dados espectrais de RMN ¹H do composto 17 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
5,59	Н-б	ddq	<i>J</i> ₁ =5,0; <i>J</i> ₂ =2,0 e <i>J</i> ₃ =1,5
4,75	H-8	dq	<i>J</i> ₁ =2,0 e <i>J</i> ₂ =1,5
4,73	H-8'	dq	<i>J</i> ₁ =2,0 e <i>J</i> ₂ =1,0
4,03	H-2	dt	<i>J</i> ₁ =4,0 e <i>J</i> ₂ =2,0
2,33	H-4	tddd	<i>J</i> ₁ =12,0; <i>J</i> ₂ = 5,0; <i>J</i> ₃ =4,0 e <i>J</i> ₄ =2,0
2,15	H-5	dtt	J_1 =17,0; J_2 =5,0 e J_3 =1,5
1,94	H-3	dddd	<i>J</i> ₁ =13,6; <i>J</i> ₂ = 4,0; <i>J</i> ₃ = 2,0 e <i>J</i> ₄ =
			1,5
1,88	H-3'	m	
1,83	H-5'	m	
1,81	H-10* (CH ₃)	m	
1,75	H-9* (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (17)

Tabela 81 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **17** (CDCl₃).

δ (ppm)	Atribuição
149,2	C ₇
134,1	C_1
125,4	C_6
109,0	C_8
68,6	C_2
36,7	C_3
35,2	C_4
31,0	C_5
20,9	C9 e C ₁₀

Espectro de RMN ¹³C (DEPT-135) do composto (17)

Tabela 82 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **17** (CDCl₃).

δ (ppm)	Atribuição
125,4	C ₆
109,0	C_8
68,6	C_2
36,7	C_3
35,2	C_4
31,0	C_5
20,9	C ₉ e C ₁₀

Composto (18)

PROTON CDCl3 u mgc 14 4.4113 4.4056 4.3993 4.3936 4.3936 4.3936 4.3778 4.3778 4.3778 4.3778 -4.1852 NAME 125fr EXPNO PROCNO *** Ace BFI 400.1300000 MH: D[1] DATE t 08:20:22 DS INSTRU NS 16 NUCI IH 01 2470.97 Hz P[1] PROBHL 15.5 used DUL 13C-1H-D Z3756/0186 PULPROG 2930 RG 456.1000061 RO 20 Hz 400.1324710 MHz SFO1 SOLVEN CDCI3 SW 20.6885 ppm 8278.146 Hz SW_I TD 65536 TE *** 300.0 K ers * GB 0.0000000 LB 0.30 Hz PC SF SI 1.00 400.1300076 MH 32768 SSB 0.0000000 WDW : EM **** 1D NMR Plot Parameters * 507 ppm_cm Hz_cm AQ_time SOLVENT 0.27 109.18 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 3.9583740 sec ? (ppm)

Espectro de RMN ¹H do composto (18)

Tabela 83 – Dados espectrais de RMN ¹H do composto 18 (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
4,39	H-2	ddd	<i>J</i> ₁ =11,0; <i>J</i> ₂ =4,8 e <i>J</i> ₃ =2,3
4,18	H-6	sl	
2,66	H-3	dddd	<i>J</i> ₁ =13,6; <i>J</i> ₂ =11,0; <i>J</i> ₃ =4,8 e <i>J</i> ₄ =3,2
2,51	H-5	dddd	<i>J</i> ₁ =13,6; <i>J</i> ₂ =11,0; <i>J</i> ₃ =4,8 e <i>J</i> ₄ =3,2
1,80	H-4	t	J=4,8
1,72	H-3'	dd	<i>J</i> ₁ =13,6 e <i>J</i> ₂ =4,8
1,30	H-5'	dd	<i>J</i> ₁ =13,6 e <i>J</i> ₂ =4,8
1,08	H-10 (CH ₃)	S	
0,92	H-9* (CH ₃)	S	
0,88	H-8* (CH ₃)	S	

*Podem estar trocados

Espectro de RMN ¹³C{¹H} do composto (18)

Tabela 84 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **18** (CDCl₃).

δ (ppm)	Atribuição
79,7	C_2
67,0	C_6
51,4	C_1
49,1	C_7
43,1	C_4
40,7	C_3
39,5	C_5
20,1	C ₈ e C ₉
11,6	C_{10}

Espectro de RMN ¹³C (DEPT-135) do composto (18)

Tabela 85 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **18** (CDCl₃).

δ (ppm)	Atribuição
79,7	C_2
67,0	C_6
43,1	C_4
40,7	C_3
39,6	C_5
20,1	$C_8 e C_9$
11,6	C10

Composto (19)

Espectro de RMN ¹H do composto (19)

Tabela 86 – Dados espectrais de RMN ¹H do composto 19 (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
5,61	H-6	m	
4,78	H-2	m	
2,69	H-4	m	
2,58	H-5	m	
1,81	H-10 (CH ₃)	m	
1,73*	H-8 (CH ₃)	S	
1,65*	H-9 (CH ₃)	S	—

*Podem estar trocados

Espectro de RMN ¹³C{¹H} do composto (19)

Tabela 87 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **19** (CDCl₃).

δ (ppm)	Atribuição
209,3	C ₃
136,8	C_1
120,6	C_6
75,6	C_2
69,8	C_7
53,9	C_4
32,1	C_{8^*}
31,3	C9*
26,2	C_5
17,9	C_{10}

Espectro de RMN ¹³C (DEPT-135) do composto (19)

Tabela 88 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **19** (CDCl₃).

δ (ppm)	Atribuição
120,6	C_6
75,6	C_2
53,9	C_4
32,1	$C_{8^{\star}}$
31,3	C9*
26,2	C_5
17,9	C ₁₀

*Podem estar trocados

Composto (20)

Espectro de RMN ¹H do composto (20)

Tabela 89 –	Dados	espectrais	RMN ¹ H	do com	posto 20	$(CDCl_3)$
	Duuoo	copecti alo	T/1111 11	40 00III		

δ (ppm)	Atribuição	Sinal	J (Hz)
5,70	H-6	m	
4,73	H-9 e H-9'	m	
4,01	H-7 e H-7'	m	
2,15	H-5*, H-5'*, H-3*, H-4*	m	
2,10	OH	S	
1,97	H-3**	m	
1,87	H-2**	m	
1,73	H-2'* e H-10 (CH ₃)	m	

*Podem estar trocados

Espectro de RMN ¹³C {¹H} do composto (20)

Tabela 90 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **20** (CDCl₃)

δ (ppm)	Atribuição
148,9	C ₈
136,4	C_1
121,6	C_6
107,8	C_9
66,4	C_7
40,2	C4
29,5	C_5
26,6	C_2
25,2	C_3
19,9	C_{10}

Espectro de RMN ¹³C (DEPT-135) do composto (20)

Tabela 91 – Dados espectrais RMN ¹³C (DEPT-135) do composto **20** (CDCl₃)

δ (ppm)	Atribuição
121,6	C_6
107,8	C ₉
66,4	C_7
40,2	C_4
29,5	C_5
26,6	C_2
25,2	C ₃
19,9	C_{10}

Composto (21)

Espectro de RMN ¹H do composto (21)

Tabela 92 – Dados espectrais RMN ¹H do composto 21 (CDCl₃)

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
5,68	H-6	m	
4,01	H-7	d	<i>J</i> =14,6
3,99	H-7'	d	<i>J</i> =14,6
2,26	H-4	m	
2,17	H-2 *	m	
2,10	H-5 *	m	
1,98	H-2'*	m	
1,77	H-3 *	dddd	$J_1=12,0; J_2=11,0; J_3=4,0; J_4=2,0$
1,75	H-5'*	m	
1,60	H-9 (CH ₃)**	S	
1,56	H-10 (CH ₃)**	m	
1,39	H-3' *	ddd	$J_1=12,0; J_2=6,0; J_3=1,0$

** Podem estar trocados

Espectro de RMN ¹³C{¹H} do composto (21)

Tabela 93 – Dados espectrais RMN ¹³ { ¹ H} do composto 21 (CDCl ₃)
--	---

δ (ppm)	Atribuição
137,8	C1
122,3	C_6
74,6	C_8
67,3	C_7
46,9	C_4
31,0	C9*
30,3	C_{10} *
27,5	C_5
26,8	C_2
24,8	C_3

Espectro de RMN ¹³C (DEPT-135) do composto (21)

Tabela 94 – Dados espectrais RMN ¹³C (DEPT-135) do composto **21** (CDCl₃)

δ (ppm)	Atribuição
122,3	C_6
67,3	C_7
46,9	C_4
31,0	C9*
30,3	C ₁₀ *
27,5	C_5
26,8	C_2
24,8	C_3

Composto (22)

Espectro de RMN ¹H do composto (22)

Tabela 95 – Dados espectrais RMN ¹H do composto 22 (CDCl₃)

δ (ppm)	Atribuição	Sinal	$J(\mathrm{Hz})$
5,62	H-6	m	
3,95	H-7	d	<i>J</i> =14,0
3,91	H-7'	d	<i>J</i> =14,0
2,05	H-2*, H-5* e H-5'*	m	
1,89	H-4*	dddt	<i>J</i> ₁ =11,0; <i>J</i> ₂ =5,0; <i>J</i> ₃ =2,5 e
			<i>J</i> ₄ =2,0
1,79	H-3 *	m	
1,48	H-2'*	dddd	<i>J</i> ₁ =13,0; <i>J</i> ₂ =12,0; <i>J</i> ₃ =5,0 e
			<i>J</i> ₄ =2,0
1,20	H-3' *	tdd	<i>J</i> ₁ =12,0; <i>J</i> ₂ =11,0 e <i>J</i> ₃ =5,0
1,14	H-9 (CH ₃)**	s	
1,12	H-10 (CH ₃)**	S	

** Podem estar trocados

Espectro de RMN ¹³C{¹H} do composto (22)

Tabela 96 – Dados espectrais RMN ${}^{13}C{}^{1}H$ do composto 22 (CDCl ₃)
--	---

δ (ppm)	Atribuição
136,5	C1
121,4	C_6
71,7	C_8
66,1	C_7
44,1	C_4
26,4	C_9^*
25,6	C5**
25,5	C2**
25,4	C_{10}^{*}
22,6	C ₃

** Podem estar trocados

Espectro de RMN ¹³C (DEPT-135) do composto (22)

Tabela 97 – Dados espectrais RMN ¹³C (DEPT-135) do composto **22** (CDCl₃)

δ (ppm)	Atribuição
121,4	C_6
66,1	C_7
44,1	C_4
26,4	C9*
25,6	C ₅ **
25,5	C ₂ **
25,4	C ₁₀ *
22,6	C_3

** Podem estar trocados

Composto (23)

Espectro de RMN ¹H do composto (23)

Tabela 98 – Dados espectrais de RMN ¹H do composto 23 (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
4,88	H-6	dd	<i>J</i> ₁ =9,5 e <i>J</i> ₂ =3,8
4,81	H-8a	m	
4,67	H-8b	m	
2,80	Η-3β	ddd	<i>J</i> ₁ =13,9; <i>J</i> ₂ =5,0 e <i>J</i> ₃ =1,7
2,64	H-4	quint	<i>J</i> =5,0
2,57	Η-3α	dd	<i>J</i> ₁ =13,9 e <i>J</i> ₂ =5,0
2,30	Η-5β	dddd	<i>J</i> ₁ =13,8; <i>J</i> ₂ =5,0; <i>J</i> ₃ =3,8 e <i>J</i> ₄ =1,7
2,02	H-12 (CH ₃)	S	
1,83	Η-5α	ddd	<i>J</i> ₁ =13,8; <i>J</i> ₂ =9,5 e <i>J</i> ₃ =5,0
1,72	H-9 (CH ₃)	m	
1,30	H-10 (CH ₃)	S	

Espectro de RMN ${}^{13}C{}^{1}H$ do composto (23)

Tabela 99 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **23** (CDCl₃).

δ (ppm)	Atribuição
211,1	C_2
170,5	C_{11}
145,6	C_7
112,9	C_8
78,0	C_1
76,2	C_6
40,8	C_3
38,5	C_4
30,4	C_5
21,9	C_{10}
21,5	C_{12}
20,7	C ₉

Espectro de RMN ¹³C (DEPT-135) do composto (23)

Tabela 100 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **23** (CDCl₃).

δ (ppm)	Atribuição
112,9	C ₈
76,2	C_6
40,8	C_3
38,5	C_4
30,4	C_5
21,9	C_{10}
21,5	C_{12}
20,7	C ₉

Tabela 101 - Dados espectr	ais de NOEDIFF do c	omposto 23 (CDCl ₃)
----------------------------	---------------------	--

δ (ppm) Irradiado	Atribuição	Efeito NOE observado
4,88	H-6	H-5β e H-10 (CH ₃) pequeno
2,80	Η-3β	H-3α e H-8b
2,64	H-4	H-8b, H-3β, H-5β, H-5α e H-9 (CH ₃)
2,57	Η-3α	H-3β e H-10 (CH ₃)
2,30	Η-5β	H-5α, H-4 e H-6
1,83	Η-5α	H-5β, H-4 e H-10 (CH ₃)
1,72	H-9 (CH ₃)	H-4 e H-8a
1,30	H-10 (CH ₃)	H-3 α , H-5 α e H-6 pequeno
> Compost	o (24)	

Pentacloreto de Nióbio como Ácido de Lewis em Síntese Orgânica

Espectro de RMN ¹H do composto (24)

Tabela 102 – Dados	spectrais de RMN ¹ H do composto 2	$4 (CDCl_3)$
--------------------	--	--------------

δ (ppm)	Atribuição	Sinal	J (Hz)
4,81	H-8a	m	
4,78	H-8b	m	
4,26	Н-б	dd	<i>J</i> ₁ =3,7 e <i>J</i> ₂ =2,6
3,04	Η-3α	dd	<i>J</i> ₁ =13,8 e <i>J</i> ₂ =12,6
2,84	H-4	tt	<i>J</i> ₁ =12,6 e <i>J</i> ₂ =3,7
2,43	Η-5α	ddd	<i>J</i> ₁ =14,1; J ₂ =12,6 e
			<i>J</i> ₃ =2,6
2,38	Η-3β	ddd	<i>J</i> ₁ =13,8; <i>J</i> ₂ =3,7 e
			<i>J</i> ₃ =2,2
1,93	Η-5β	dtd	<i>J</i> ₁ =14,1; <i>J</i> ₂ =3,7 e
			<i>J</i> ₃ =2,2
1,76	H-9 (CH ₃)	m	
1,65	H-10 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (24)

Pentacloreto de Nióbio como Ácido de Lewis em Síntese Orgânica

Tabela 103 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **24** (CDCl₃).

δ (ppm)	Atribuição
205,4	C_2
146,5	C_7
110,6	C_8
76,8	C_6
68,0	C_1
41,1	C ₃
39,0	C_4
32,8	C_5
22,1	C_{10}
20,3	C9

Espectro de RMN ¹³C (DEPT-135) do composto (24)

Tabela 104 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **24** (CDCl₃).

δ (ppm)	Atribuição
110,6	C ₈
76,8	C_6
41,1	C ₃
39,0	C_4
32,8	C_5
22,1	C_{10}
20,3	C ₉

Tabela 105 - D	Dados espectrais	de NOEDIFF do	composto 24	(CDCl ₃)
-----------------------	------------------	---------------	--------------------	----------------------

δ (ppm) Irradiado	Atribuição	Efeito NOE observado
4,26	H-6	H-5α>H-5β, H- 3α e H-10 (CH ₃)
		pequeno
3,04	Η-3α	H-3β, H-4, H-8b e H-9 (CH ₃)
2,84	H-4	H-8b, H-3α, H-3β, H-5β, H-5α e H-9
		(CH ₃)
1,93	Η-5β	H-5α, H-4, H-9 (CH ₃) e H-6
1,76	H-9 (CH ₃)	H-8a>H-8b, H-3α, H-4 e H-5α
1,65	H-10 (CH ₃)	H-3 β , H-5 β e H-4 pequeno

Composto (25)

Espectro de RMN ¹H do composto (25)

Tabela 106 – Dados espectrais de RMN ¹H do composto 25 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
8,23	H-9	dd	<i>J</i> ₁ =8,0 e <i>J</i> ₂ =1,5
8,03	H-1	S	
7,69	H-7	ddd	<i>J</i> ₁ =8,6; <i>J</i> ₂ =7,1 e <i>J</i> ₃ =1,5
7,50	H-6	d	<i>J</i> =8,6
7,41	H-8	ddd	<i>J</i> ₁ =8,0; <i>J</i> ₂ =7,1 e <i>J</i> ₃ =1,5

Espectro de RMN ¹³C{¹H} do composto (25)

Tabela 107 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **25** (CDCl₃).

δ (ppm)	Atribuição
174,0	C ₃
156,3	C_5
142,1	C_2
139,9	C_1
133,6	C_7
125,5	C_8
124,8	C ₉
122,5	C4
118,6	C ₆

Espectro de RMN ¹³C (DEPT-135) do composto (25)

Tabela 108 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **25** (CDCl₃).

δ (ppm)	Atribuição
139,9	C1
133,6	C_7
125,5	C_8
124,8	C_9
118,6	C ₆

Composto (28)

Espectro de RMN ¹H do composto (28)

Tabela 109 – Dados espectrais de RMN ¹H do composto 28 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
5,89	H-1	t	<i>J</i> =1,1
2,54	H-3	td	<i>J</i> ₁ =6,2 e <i>J</i> ₂ =1,1
2,39	H-5	t	<i>J</i> =6,2
2,22	H-8 (CH ₃)	S	
2,06	H-4	quint	<i>J</i> =6,2

Espectro de RMN ¹³C{¹H} do composto (28)

Tabela 110 –Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **28** (CDCl₃).

δ (ppm)	Atribuição
199,2	C ₆
169,5	C_2
166,9	C_7
116,8	C_1
36,2	C_5
27,8	C_3
20,7	$C_4 e C_8$

Espectro de RMN ¹³C (DEPT-135) do composto (28)

Tabela 111 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **28** (CDCl₃).

δ (ppm)	Atribuição
116,8	C1
36,2	C_3
27,8	C_5
20,7	$C_4 e C_8$

Composto (30)

Espectro de RMN ¹H do composto (30)

Tabela 112 – Dados espectrais de RMN ¹H do composto **30** (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
5,86	H-1	S	
2,32	H-3 e H-5	m	
2,01	H-4	m	
1,97	H-7 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (30)

Tabela 113 – Dados Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **30** (CDCl₃).

δ (ppm)	Atribuição
200,0	C_6
163,2	C_2
126,9	C_1
37,3	C_5
31,2	C_3
24,7	C_7
22,8	C_4

Espectro de RMN ¹³C (DEPT-135) do composto (30)

Tabela 114 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **30** (CDCl₃).

δ (ppm)	Atribuição
126,9	C1
37,3	C_5
31,2	C_3
24,7	C_7
22,8	C4

Composto (34)

Espectro de RMN ¹H do composto (34)

Tabela 115 – Dados espectrais de RMN ¹H do composto 34 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
6,19	H-5	dd	<i>J</i> ₁ =5,7 e <i>J</i> ₂ =2,9
6,01	H-6	dd	<i>J</i> ₁ =5,7 e <i>J</i> ₂ =2,9
3,26	H-3	sl	
2,88	H-4	sl	
2,73	H-1	dd	<i>J</i> ₁ =10,2 e <i>J</i> ₂ =3,6
2,67	H-2	m	
2,32	H-10	dddd	<i>J</i> ₁ =18,4; <i>J</i> ₂ =6,0; <i>J</i> ₃ =2,5; <i>J</i> ₄ =1,9
1,97	H-7	m	
1,93	H-10'	ddd	<i>J</i> ₁ =18,4; <i>J</i> ₂ =12,0 e <i>J</i> ₃ =6,9
1,62-1,85	H-9 e 9'	m	
1,45	H-11	dt	<i>J</i> ₁ =8,3 e <i>J</i> ₂ =1,9
1,31	H-11'	dt	<i>J</i> ₁ =8,3 e <i>J</i> ₂ =1,5
0,77	H-7'	tdd	<i>J</i> ₁ =12,5 <i>J</i> ₂ =10,6 e <i>J</i> ₃ =3,5

Espectro de RMN ${}^{13}C{}^{1}H$ do composto (34)

Tabela 116 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **34** (CDCl₃).

δ (ppm)	Atribuição
215,5	C ₈
137,6	C_5
134,9	C_6
51,6	C_1
48,3	C11
46,5	C_4
45,2	C_3
41,4	C_2
39,4	C_{10}
28,0	C_7
21,8	C ₉

Espectro de RMN ¹³C (DEPT-135) do composto (34)

Tabela 117 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **34** (CDCl₃).

δ (ppm)	Atribuição
137,6	C_5
134,9	C_6
51,6	C_1
48,3	C_{11}
46,5	C_4
45,2	C_3
41,4	C_2
39,4	C_{10}
28,0	C_7
21,8	C ₉

> Composto (35)

Espectro de RMN ¹H do composto (35)

Tabela 118 – Dados espectrais de RMN ¹H do composto 35 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
6,22	H-1	t	<i>J</i> =1,5
2,69	H-3	td	<i>J</i> ₁ =6,5 e <i>J</i> ₂ =1,5
2,40	H-5	t	<i>J</i> =6,5
2,09	H-4	quint	<i>J</i> =6,5

Espectro de RMN ¹³C{¹H} do composto (35)

Tabela 119 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **35** (CDCl₃).

δ (ppm)	Atribuição
196,8	C_6
158,6	C_2
128,4	C_1
36,3	C_5
33,9	C_3
22,2	C4

Espectro de RMN ¹³C (DEPT-135) do composto (35)

Tabela 120 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **35** (CDCl₃).

δ (ppm)	Atribuição
128,4	C1
36,3	C_5
33,9	C_3
22,2	C4

Composto (36)

Espectro de RMN ¹H do composto (36)

Tabela 121 – Dados espectrais de RMN ¹H do composto 36 (CDCl₃).

δ (ppm)	Atribuição	sinal	J (Hz)
5,34	H-1	S	
3,91	H-7	q	<i>J</i> =7,0
2,41	H-3	t	<i>J</i> =6,4
2,33	H-5	t	<i>J</i> =6,4
1,98	H-4	quint	<i>J</i> =6,4
1,37	H-8 (CH ₃)	t	<i>J</i> =7,0

Espectro de RMN ¹³C{¹H} do composto (36)

Tabela 122 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **36** (CDCl₃).

δ (ppm)	Atribuição
199,7	C_6
177,9	C_2
102,7	C_1
65,2	C_7
36,8	C_5
29,1	C ₃
21,3	C_4
14,1	C ₈

Espectro de RMN ¹³C (DEPT-135) do composto (36)

Tabela 123 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **36** (CDCl₃).

δ (ppm)	Atribuição
102,7	C_1
64,2	C_7
36,8	C_5
29,1	C ₃
21,3	C_4
14,1	C_8

Composto (37)

Espectro de RMN ¹H do composto (37)

Tabela 124 – Dados espectrais de RMN ¹H do composto 37 (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
5,91	H-2	S	
3,15	H-3	ddt	<i>J</i> ₁ =10,5; <i>J</i> ₂ =8,6 e <i>J</i> ₃ =4,8
2,66	H-8	ddt	<i>J</i> ₁ =14,2; <i>J</i> ₂ =4,8 e <i>J</i> ₃ =0,9
2,49	H-8'	ddd	<i>J</i> ₁ =14,2; <i>J</i> ₂ =10,5 e <i>J</i> ₃ =0,9
2,35	H-6	m	
2,10	H-5	m	
1,82	H-4	m	

Espectro de RMN ¹³C{¹H} do composto (37)

Tabela 125 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **37** (CDCl₃).

δ (ppm)	Atribuição
210,1	C_7
155,8	C_1
104,8	C_2
45,5	C_8
41,2	C_6
37,5	C_3
29,8	C_5
24,3	C_4

Espectro de RMN ¹³C (DEPT-135) do composto (37)

Tabela 126 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **37** (CDCl₃).

δ (ppm)	Atribuição
104,8	C_2
45,5	C_8
41,2	C_6
37,5	C_3
29,8	C_5
24,3	C4

> Composto (38)

Espectro de RMN ¹H do composto (38)

Tabela 127 – Dados espectrais de RMN ¹H do composto 38 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
5,88	H-2	d	<i>J</i> =3,3
5,85	H-3	d	<i>J</i> =3,3
3,12	H-7	tt	<i>J</i> ₁ =10,0 e J ₂ =4,5
2,66	H-6	ddt	<i>J</i> ₁ =14,5; <i>J</i> ₂ =4,5 e J ₃ =1,5
2,51	H-6'	ddd	J_1 =14,5; J_2 =10,0; J_3 =1,5
2,37	H-9	m	
2,25	H-5 (CH ₃)	S	
2,15	H-10	m	
2,01	H-10'	m	
1,82	H-8	m	

Espectro de RMN ${}^{13}C{}^{1H}$ do composto (38)

Tabela 128 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **38** (CDCl₃).

δ (ppm)	Atribuição
210,4	C ₁₁
155,4	C_1
150,8	C_4
105,8	C_3
105,0	C_2
45,7	C_6
41,3	C_{10}
37,6	C_7
30,0	C ₉
24,4	C_8
13,5	C_5

Espectro de RMN ¹³C (DEPT-135) do composto (38)

Tabela 129 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **38** (CDCl₃).

δ (ppm)	Atribuição
105,8	C ₃
105,0	C_2
45,7	C_6
41,3	C_{10}
37,6	C_7
30,0	C9
24,4	C_8
13,5	C_5

Composto (39)

Espectro de RMN ¹H do composto (39)

Tabela 130 – Dados espectrais de RMN ¹H do composto 39 (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
6,11	H-3	d	<i>J</i> =3,0
5,90	H-19	d	<i>J</i> = 3,0
5,84	H-14	d	<i>J</i> = 3,0
5,81	H-13	d	<i>J</i> = 3,0
5,76	H-18	d	<i>J</i> = 3,0
5,64	H-2	d	<i>J</i> =3,0
2,81	H-7	tt	<i>J</i> ₁ =12,0 e <i>J</i> ₂ =3,5
2,74	H-9	m	
2,48	H-9'	m	
2,23	H-21*(CH ₃)	S	
2,21	H-16*(CH ₃)	S	
2,18	H-5*(CH ₃)	S	
1,95	H-10	m	
1,92	H-6	t	<i>J</i> =12,0
1,84	H-6'	dd	<i>J</i> ₁ =12,0 e <i>J</i> ₂ =3,5
1,73	H-8	m	

Pentacloreto de Nióbio como Ácido de Lewis em Síntese Orgânica

Seção de Espectros				
1,55	H-8'	ddt	<i>J</i> ₁ = 25,0; J ₂ =14,0 e J ₃ =3,5	
1,37	H-10'	dd	J_1 =25,0; J_2 =12,5	

*Podem estar trocados

Espectro de RMN ${}^{13}C{}^{1H}$ do composto (39)

Tabela 131 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **39**(CDCl₃).

δ (ppm)	Atribuição
159,9	C ₁₂ *
159,0	C_{17}^{*}
155,1	C_1^*
151,1	C ₂₀ **
150,7	C ₁₅ **
150,4	C_4^{**}
108,1	C_{14} ***
106,6	C ₁₉ ***
106,2	C ₃ ***
106,1	C_{18} ****
104,7	C ₁₃ ****
104,0	C_2^{****}
42,4	C ₁₁
39,1	C_6

33.8	C ₁₀
33,8	C ₇
31,7	C_8
22,7	C9
14,1	C_{16} *****
14,0	C_{21} *****
14,0	C5****

*Podem estar trocados **Podem estar trocados

***Podem estar trocados

****Podem estar trocados

*****Podem estar trocados

Tabela 132 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **39** (CDCl₃).

δ (ppm)	Atribuição
108,1	C ₁₄ *
106,6	C_{19}^{*}
106,2	C ₃ *
106,1	C_{18} **
104,7	C ₁₃ **
104,0	C2**
39,1	C_6
33,8	C_{10}
33,8	C_7
31,7	C_8
22,7	C_9
14,1	C_{16} ***
14,0	C ₂₁ ***
14,0	C_5^{***}

*Podem estar trocados

**Podem estar trocados

***Podem estar trocados

Composto (40)

Espectro de RMN ¹H do composto (40)

Tabela 133 – Dados espectrais de RMN ¹H do composto 40 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
5,86	H-2	d	<i>J</i> =3,0
5,81	H-3	d	<i>J</i> =3,0
2,71	H-6	dt	<i>J</i> ₁ =14,0 e <i>J</i> ₂ =1,5
2,31	H-6', H-10, H-8	m	
2,23	H-5 (CH ₃)	S	
2,20	H-10'	m	
1,86	H-9	m	
1,73	H-8'	m	
1,64	H-9'	m	
1,30	H-12 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (40)

Tabela 134 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **40** (CDCl₃).

δ (ppm)	Atribuição
210,8	C11
157,9	C_1
150,8	C_4
105,7	C ₃ *
105,6	C_2^*
51,9	C_6
40,7	C_{10}
40,4	C_7
35,9	C_8
27,2	C_{12}
22,1	C ₉
13,5	C_5

* Podem estar trocados

Espectro de RMN ¹³C (DEPT-135) do composto (40)

Tabela 135 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **40** (CDCl₃).

δ (ppm)	Atribuição
105,7	C ₃ *
105,6	C_2^*
51,9	C_6
40,7	C_5
35,9	C_8
27,2	C_{12}
22,1	C9
13,5	C ₅

* Podem estar trocados

Composto (41)

Espectro de RMN ¹H do composto (41)

Tabela 136 – Dados espectrais de RMN ¹H do composto **41** (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
5,92	H-3	d	<i>J</i> =3,0
5,87	H-19	d	<i>J</i> =3,0
5,75	H-14, H-13	m	
5,72	H-18	d	<i>J</i> =3,0
5,62	H-2	d	<i>J</i> =3,0
2,47	H-6	d	<i>J</i> =13,5
2,42	H-6'	d	<i>J</i> =13,5
2,25	H-21*(CH ₃)	S	
2,23	H-16*(CH ₃)	S	
2,23	H-10	m	
2,17	H-5*(CH ₃)	S	
2,02	H-10'	m	
1,83	H-8, H-9 e H-9'	m	
1,59	H-8'	m	
0,96	H-22 (CH ₃)	S	
*D 1 / / 1			

*Podem estar trocados

Espectro de RMN ${}^{13}C{}^{1H}$ do composto (41)

Tabela 137 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **41** (CDCl₃).

δ (ppm)	Atribuição
162,2	C1*
158,3	C_{12}^{*}
156,7	C_{17}^{*}
150,1	C ₂₀ **
150,0	C ₁₅ **
149,5	C4**
106,1	C3***
105,6	C ₁₄ ***
105,5	C ₁₉ ***
105,3	C ₁₃ ****
104,8	C ₁₈ ****
102,6	C ₂ ****
42,5	C_6
40,5	C ₁₁
36,0	C_8
35,6	C_7
33,4	C_{10}
25,3	C_{22}
19,1	C ₉
13,6	C_{21} *****
13,6	C_{16} *****

*Podem estar trocados **Podem estar trocados ***Podem estar trocados ****Podem estar trocados ****Podem estar trocados

Espectro de RMN ¹³C (DEPT-135) do composto (41)

Tabela 138 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **41** (CDCl₃).

δ (ppm)	Atribuição
106,1	C ₃ *
105,6	$C_{14}*$
105,5	C ₁₉ *
105,3	C ₁₃ **
104,8	C_{18} **
102,6	C_2^{**}
42,5	C_6
36,0	C_8
33,4	C_{10}
25,3	C_{22}
19,1	C ₉
13,6	C_{21} ***
13,6	C ₁₆ ***
13,5	C5***

*Podem estar trocados **Podem estar trocados ***Podem estar trocados

Composto (46)

Espectro de RMN ¹H do composto (46)

Tabela 139 – Dados espectrais de RMN ¹H do composto **46** (CDCl₃).

	<u> </u>	<u>+</u>	- /
δ (ppm)	Atribuição	Sinal	J (Hz)
5,91	H-1	t	<i>J</i> =1,3
2,42	H-3	S	
2,27	H-5	S	
2,21	H-10 (CH ₃)	S	
1,10	H-7 (CH ₃) e H-8 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (46)

Tabela 140 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **46** (CDCl₃).

δ (ppm)	Atribuição
199,6	<u>C</u> 6
168,1	C_2
167,5	C_9
116,5	C_1
50,8	C_5
42,2	C_3
33,2	C_4
28,1	$C_7 e C_8$
21,3	C ₁₀

Espectro de RMN ¹³C (DEPT-135) do composto (46)

Tabela 141 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **46** (CDCl₃).

δ (ppm)	Atribuição
116,5	C_1
50,8	C_5
42,2	C_3
28,1	$C_7 e C_8$
21,3	C ₁₀

Composto (48)

Espectro de RMN ¹H do composto (48)

Tabela 142 – Dados espectrais de RMN ¹H do composto 48 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
7,35	H-11 e H-13	m	
7,26	H-12, H-10, H-14	m	
6,01	H-1	d	<i>J</i> =2,1
3,43	H-4	tt	<i>J</i> ₁ =11,0 e <i>J</i> ₂ =5,0
2,87	H-3	ddd	<i>J</i> ₁ =17,0; <i>J</i> ₂ =5,0 e <i>J</i> ₃ =2,1
2,67	H-5	dd	<i>J</i> ₁ =16,0 e <i>J</i> ₂ =5,0
2,66	H-3'	dd	<i>J</i> ₁ =17,0 e <i>J</i> ₂ =11,0
2,63	H-5'	dd	<i>J</i> ₁ =16,0 e <i>J</i> ₂ =11,0
2,21	H-8 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (48)

Tabela 143 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **48** (CDCl₃).

δ (ppm)	Atribuição
199,2	C_6
169,3	C_2
167,8	C_7
142,5	C_9
129,3	C ₁₁ e C ₁₃
127,7	C_{12}
127,1	C ₁₀ e C ₁₄
117,7	C_1
44,2	C_5
40,0	C_4
36,5	C_3
21,7	C_8

Espectro de RMN ¹³C (DEPT-135) do composto (48)

Tabela 144 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **48** (CDCl₃).

δ (ppm)	Atribuição
129,3	C ₁₁ e C ₁₃
127,7	C_{12}
127,1	$C_{10} e C_{14}$
117,7	C_1
44,2	C_5
40,0	C_4
36,5	C_3
21,7	C_8

> Composto (50)

Espectro de RMN ¹H do composto (50)

Tabela 145 – Dados espectrais de RMN ¹H do composto **50** (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
2,54	H-3	tq	<i>J</i> ₁ =6,0 e <i>J</i> ₂ =2,0
2,45	H-5	t	<i>J</i> =6,0
2,24	H-8 (CH ₃)	S	
2,02	H-4	quint	<i>J</i> =6,0
1,66	H-9 (CH ₃)	t	<i>J</i> =2,0

Espectro de RMN ${}^{13}C{}^{1H}$ do composto (50)

Tabela 146 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **50** (CDCl₃).

δ (ppm)	Atribuição
199,4	C_6
167,4	C_2
164,3	C_7
124,8	C_1
37,0	C_5
28,6	C_3
20,9	C_4
20,8	C_8
8,3	C ₉

Espectro de RMN ¹³C (DEPT-135) do composto (50)

Tabela 147 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **50** (CDCl₃).

δ (ppm)	Atribuição
37,0	C_5
28,6	C_3
20,9	C_4
20,8	C_8
8,3	C9

> Composto (52)

Espectro de RMN ¹H do composto (52)

Tabela 148 – Dados espectrais de RMN ¹H do composto **52** (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
2,84	H-3	m	
2,52	H-4	m	
2,30	H-7(CH ₃)	S	
1,63	H-8 (CH ₃)	t	<i>J</i> =2,0

Espectro de RMN ¹³C{¹H} do composto (52)

Tabela 149 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **52** (CDCl₃).

δ (ppm)	Atribuição
206,2	C_5
175,9	C_6
166,6	C_2
126,2	C_1
34,3	C_4
27,1	C ₃
21,1	C_7
6,6	C ₈

Espectro de RMN ¹³C (DEPT-135) do composto (52)

Tabela 150 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **52** (CDCl₃).

δ (ppm)	Atribuição
34,3	C_5
27,1	C_4
21,1	C_7
6,6	C_8

Composto (54)

Espectro de RMN ¹H do composto (54)

Tabela 151 – Dados espectrais de RMN ¹H do composto **54** (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
5,79	H-1	S	
2,56	H-3	t	<i>J</i> =6,0
2,21	H-10 (CH ₃)	S	
1,87	H-4	t	<i>J</i> =6,0
1,13	H-7 (CH ₃) e H-8 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (54)

Tabela 152 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **54** (CDCl₃).

δ (ppm)	Atribuição
204,2	C_6
167,8	C_2
167,5	C9
115,9	C_1
40,6	C_5
34,8	C_4
25,8	C_3
24,0	$C_{7 e} C_8$
21,2	C ₁₀

Espectro de RMN ¹³C (DEPT-135) do composto (54)

Tabela 153 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **54** (CDCl₃).

δ (ppm)	Atribuição
115,9	C1
34,8	C_4
25,8	C ₃
24,0	$\mathrm{C}_{7\ \mathrm{e}}\mathrm{C}_{8}$
21,2	C ₁₀

> Composto (55)

Espectro de RMN ¹H do composto (55)

Tabela 154 – Dados espectrais de RMN ¹H do composto **55** (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
6,22	H-1	t	<i>J</i> =1,5
2,56	H-3	S	
2,01	H-5	S	
1,10	H-7 (CH ₃) e H-8 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (55)

Tabela 155 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **55** (CDCl₃).

δ (ppm)	Atribuição
197,0	C ₆
156,8	C_2
127,3	C_1
50,4	C_5
47,8	C_3
34,0	C_4
28,1	C ₇ e C ₈

Espectro de RMN ¹³C (DEPT-135) do composto (55)

Tabela 156 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **55** (CDCl₃).

δ (ppm)	Atribuição
127,3	C_1
50,4	C_5
47,8	C_3
28,1	$C_7 e C_8$

> Composto (56)

Espectro de RMN ¹H do composto (56)

Tabela 157 -	- Dados est	pectrais de	RMN ¹ H	do composto 56	5 (CDC1 ₃).
	D 4400 001		· · · · · · · · · · · · · · · · · · ·		

δ (ppm)	Atribuição	Sinal	J (Hz)
5,34	H-1	S	- ()
3,90	H-9	q	J=7,0
2,27	H-3	S	,
2,20	H-5	S	
1,36	H-10 (CH ₃)	t	<i>J</i> =7,0
1,07	H-7 (CH ₃), H-8 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (56)

Tabela 158 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **56** (CDCl₃).

δ (ppm)	Atribuição
199,6	C ₆
176,2	C_2
101,5	C_1
64,2	C ₉
50,8	C_5
43,0	C ₃
32,5	C_4
28,3	$C_7 e C_8$
14,1	C_{10}

Espectro de RMN ¹³C (DEPT-135) do composto (56)

Tabela 159 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **56** (CDCl₃).

δ (ppm)	Atribuição
101,5	C_1
64,2	C_9
50,8	C_5
43,0	C_3
28,3	$C_7 e C_8$
14,1	C ₁₀

> Composto (57)

Espectro de RMN ¹H do composto (57)

Tabela 160 – Dados espectrais de RMN ¹H do composto **57** (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
7,35	H-9 e H-11	m	
7,25	H-8; H-10 e H-12	m	
6,31	H-1	S	
3,45	H-4	dddd	<i>J</i> ₁ =12,0; <i>J</i> ₂ =8,7; <i>J</i> ₃ =7,2 e <i>J</i> ₄ =5,0
2,92	H-3	m	
2,71	H-5	dd	<i>J</i> ₁ =16,4 e <i>J</i> ₂ =5,0
2,62	H-5'	dd	<i>J</i> ₁ =16,4 e <i>J</i> ₂ =12,0

Espectro de RMN ¹³C{¹H} do composto (57)

Tabela 161 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **57** (CDCl₃).

δ (ppm)	Atribuição
196,1	C ₆
157,5	C_2
141,6	C_7
128,9	$C_9 e C_{11}$
128,3	C_1
128,4	C_{10}
126,6	$C_8 e C_{12}$
43,3	C_5
41,6	C_3
40,4	C4

Espectro de RMN ¹³C (DEPT-135) do composto (57)

Tabela 162 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **57** (CDCl₃).

δ (ppm)	Atribuição
128,9	C ₉ e C ₁₁
128,3	C_1
128,4	C_{10}
126,6	$C_8 e C_{12}$
43,3	C_5
41,6	C_3
40,4	C4

> Composto (58)

Espectro de RMN ¹H do composto (58)

Tabela 163 – Dados espectrais de RMN ¹H do composto **58** (CDCl₃).

δ (ppm)	Atribuição	Sinal	<i>J</i> (Hz)
7,34	H-11 e H-13	m	
7,25	H-10, H-12 e H-14	m	
5,43	H-1	d	<i>J</i> =1,3
3,95	H-7	dq	J_1 =10,0; J_2 =7,0
3,92	H-7'	dq	J_1 =10,0; J_2 =7,0
3,35	H-4	ddt	<i>J</i> ₁ =12,6; <i>J</i> ₂ =10,6 e <i>J</i> ₃ =5,3
2,67	H-3	ddd	<i>J</i> ₁ =16,5; <i>J</i> ₂ =10,6 e <i>J</i> ₃ =1,3
2,65	H-3'	ddd	<i>J</i> ₁ =16,5; <i>J</i> ₂ =5,3 e <i>J</i> ₃ =1,3
2,61	H-5	ddd	<i>J</i> ₁ =16,5; <i>J</i> ₂ =5,3 e <i>J</i> ₃ =1,3
2,55	H-5'	dd	<i>J</i> ₁ =16,5 e <i>J</i> ₂ =12,6
1,36	H-8 (CH ₃)	t	<i>J</i> =7,0

Espectro de RMN ¹³C{¹H} do composto (58)

Tabela 164 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **58** (CDCl₃).

δ (ppm)	Atribuição
199,3	C_6
177,4	C_2
143,1	C ₉
129,2	$C_{11} e C_{13}$
127,4	C_{12}
127,1	$C_{10} e C_{14}$
102,9	C_1
64,9	C ₇
44,2	C_5
39,7	C_4
37,1	C ₃
14,5	C ₈

Espectro de RMN ¹³C (DEPT-135) do composto (58)

Tabela 165 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **58** (CDCl₃).

δ (ppm)	Atribuição
129,2	C ₁₁ e C ₁₃
127,4	C_{12}
127,1	$C_{10} e C_{14}$
102,9	C_1
64,9	C_7
44,2	C_5
39,7	C ₄
37,1	C_3
14,5	C_8

Composto (59)

Espectro de RMN ¹H do composto (59)

Tabela 166 – Dados espectrais de RMN ¹H do composto **59** (CDCl₃).

	*		i , , , , , , , , , , , , , , , , , , ,
δ (ppm)	Atribuição	Sinal	J (Hz)
2,74	H-3	tq	<i>J</i> ₁ =6,0 e <i>J</i> ₂ =2,0
2,45	H-5	t	<i>J</i> = 6,0
2,04	H-4	quint	<i>J</i> =6,0
1,91	H-7	t	<i>J</i> =2,0

Espectro de RMN ¹³C{¹H} do composto (59)

Tabela 167 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **59** (CDCl₃).

δ (ppm)	Atribuição	
195,6	C ₆	
152,4	C_2	
132,5	C_1	
36,0	C_5	
33,8	C_3	
20,9	C_4	
11,3	C ₇	

Espectro de RMN ¹³C (DEPT-135) do composto (59)

Tabela 168 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **59** (CDCl₃).

δ (ppm)	Atribuição
36,0	C_5
33,8	C_3
20,9	C ₄
11,3	C ₇

Composto (60)

Espectro de RMN ¹H do composto (60)

Tabela 169 – Dados espectrais de RMN ¹H do composto **60** (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
2,81	H-3	m	
2,55	H-4	m	
1,78	H-6 (CH ₃)	t	<i>J</i> =2,0

Espectro de RMN ¹³C{¹H} do composto (60)

Tabela 170 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **60** (CDCl₃).

δ (ppm)	Atribuição
204,8	C_5
164,0	C_2
138,0	C_1
35,0	C_4
32,8	C_3
8,3	C_6

Espectro de RMN ¹³C (DEPT-135) do composto (60)

Tabela 171 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **60** (CDCl₃).

δ (ppm)	Atribuição
35,0	C_4
32,8	C_3
8,3	C_6

> Composto (61)

Espectro de RMN ¹H do composto (61)

Tabela 172 – Dados espectrais de RMN ¹ H do composto 6	51 (CDCI ₃).
---	---------------------------------

δ (ppm)	Atribuição	Sinal	J (Hz)
6,12	H-1	t	<i>J</i> =1,5
2,70	H-3	td	<i>J</i> ₁ =6,0 e <i>J</i> ₂ =1,5
1,90	H-4	t	<i>J</i> =6,0
1,12	H-7 (CH ₃) e H-8 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (61)

Tabela 173 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **61** (CDCl₃).

δ (ppm)	Atribuição
200,1	C ₆
155,6	C_2
126,0	C_1
39,6	C_5
35,2	C_4
30,8	C_3
23,1	$C_7 e C_8$

Espectro de RMN ¹³C (DEPT-135) do composto (61)

Tabela 174 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **61** (CDCl₃).

δ (ppm)	Atribuição
126,0	C_1
35,2	C_4
30,8	C_3
23,1	$C_7 e C_8$

> Composto (62)

Espectro de RMN ¹H do composto (62)

Tabela 175 – Dados espectrais de RMN ¹H do composto 62 (CDCl₃).

δ (ppm)	Atribuição	Sinal	J (Hz)
5,24	H-1	S	
3,89	H-9	q	<i>J</i> =7,0
2,43	H-3	t	<i>J</i> =6,5
1,80	H-4	t	<i>J</i> =6,5
1,36	H-10	t	<i>J</i> =7,0
1,11	H-8 (CH ₃) e H-7 (CH ₃)	S	

Espectro de RMN ¹³C{¹H} do composto (62)

Tabela 176 – Dados espectrais de RMN ${}^{13}C{}^{1}H$ do composto **62** (CDCl₃).

δ (ppm)	Atribuição
204,9	C_6
176,2	C_2
101,3	C_1
64,5	C_9
40,5	C_5
35,4	C_4
26,6	C_3
24,9	$C_7 e C_8$
14,5	C_{10}

Espectro de RMN ¹³C (DEPT-135) do composto (62)

Tabela 177 – Dados espectrais de RMN ¹³C (DEPT-135) do composto **62** (CDCl₃).

δ (ppm)	Atribuição
101,3	C_1
64,5	C9
35,4	C ₄
26,6	C_3
24,9	$C_7 e C_8$
14,5	C ₁₀

7. Parte Experimental

7. PARTE EXPERIMENTAL

- Nesta seção, os compostos foram nomeados conforme recomendações oficiais da International Union of Pure and Applied Chemistry (IUPAC) para nomenclatura de compostos orgânicos.
- Os espectros de ressonância magnética nuclear de próton (RMN 1H, 300 MHz) foram obtidos em um espectrômetro Bruker DPX-300, os espectros de ressonância magnética nuclear de próton (**RMN** ¹**H**, 400 MHz) em um espectrômetro Bruker DRX-400 e os espectros de ressonância magnética nuclear de próton (**RMN** ¹**H**, 500 MHz) em um espectrômetro Bruker DRX-500. Os deslocamentos químicos (δ) estão relatados em parte por milhão (ppm) em relação ao tetrametilsilano (TMS), utilizado como padrão interno, colocando-se entre parênteses a multiplicidade (s = singleto, s.l = singleto largo, d = dubleto, t = tripleto, q = quadrupleto,quint= quintupleto, d.d = duplo dubleto, d.d.d = duplo duplo dubleto, d.d.d.d = duplo duplo duplo dubleto, d.t = duplo tripleto, d.d.t = duplo duplo tripleto, d.q = duplo quadrupleto, d.d.q= duplo duplo quadrupleto, t.t = triplo tripleto, d.t.t = duplo triplo tripleto t.d.d = triplo duplo dubleto, m = multipleto), a constante de acoplamento (J) em Hertz (Hz) e o número de hidrogênios deduzidos da integral relativa.
- Os espectros de ressonância magnética nuclear de carbono-13 (RMN ¹³C, 75 MHz) foram obtidos em um espectrômetro Bruker DPX-300 e os espectros de ressonância magnética nuclear de carbono-13 (RMN ¹³C, 100 MHz) em um espectrômetro Bruker DRX-400 e os espectros de

ressonância magnética nuclear de carbono-13 (**RMN** ¹³**C**, 125 MHz) em um espectrômetro Bruker DRX-500 e foram traçados de acordo com a conveniência, utilizando-se as seguintes técnicas:

¹³C{¹H} – Carbono totalmente desacoplado de hidrogênio;
 DEPT - Distortionless Enhancement by Polarization
 Transfer.

- Os espectros de absorção no infravermelho foram registrados em um espectrômetro Perkin Elmer modelo 1600-FT, em celas de KBr para líquidos (filme) ou em pastilhas de KBr para sólidos.
- Os espectros de massas de baixa resolução foram obtidos em um aparelho HP-GC/MS SYSTEM 5988A por injeção de amostra através de um cromatógrafo gasoso (coluna capilar HP-5 de 25 m, 0,53 mm de diâmetro e espessura do filme de 0,23 nm de diâmetro, ligeiramente apolar), utilizando-se energia de ionização de 70 eV. Os ions fragmentados foram descritos como relação entre massa e carga (m/z) e abundância relativa expressa em porcentagem (%).
- As cromatografias gás-líquido (C.G.L.) foram efetuadas em um cromatógrafo Varian GC 3400 com uma coluna capilar de sílica fundida (30 m de comprimento x 0,25 mm de diâmetro) contendo DB 1701 (fase sólida de espessura 0,25 μm) operando na faixa de temperaturas de 50-200°C.
- As cromatografias em camada delgada (CCD) foram realizadas utilizando-se placas de sílica gel 60 da Merck[®]. As purificações por cromatografia em coluna foram realizadas utilizando sílica gel 60 da Merck[®].

- Os pontos de fusão foram determinados em uma placa de aquecimento segundo Klofer com um termômetro não aferido, instalada em um microscópio modelo Bristoline.
- Para a destilação horizontal empregou-se um aparelho de destilação evaporativa horizontal Kugelrohrofen Büchi modelo GKR-50. As temperaturas registradas referem-se à temperatura do forno.
- Para concentrar as soluções orgânicas foram utilizados evaporadores rotatórios do tipo Buchler e Büchi, operando à pressão de aproximadamente 30 mmHg.
- Os solventes e reagentes comerciais foram convenientemente purificados conforme métodos usuais.⁷⁹
- Todos os espectros foram realizados com material cuidadosamente purificado.

7.1. Epóxido de Isoforona (1):

Procedimento: Para uma solução de isoforona (1,05 g, 6,8 mmol) em metanol (7,0 mL) foi adicionada uma solução de H₂O₂ 30% (2 mL, 21 mmol). Em seguida adicionou-se lentamente uma solução aquosa de NaOH 6 mol/L (0,6 mL, 3,3 mmol). Durante a adição, a temperatura da reação foi mantida entre 15 e 20°C, resfriando-se com um banho de água gelada. Terminada a adição, a reação foi mantida sob agitação por 120 minutos com temperatura entre 20 e 25°C. Diluiu-se com 8 mL de água e a mistura resultante foi extraída com duas porções de 8 mL de éter etílico. A fase orgânica foi lavada com água, solução aquosa de NaCl e secada com sulfato de magnésio anidro, em seguida evaporou-se o solvente sob pressão reduzida, obtendo-se 0,733 g do epóxido, na forma de óleo incolor. Rendimento: 70 %.

Dados espectroscópicos

RMN ¹**H** (300 MHz, CDCl₃): δ 2,93 (dd, 1H, J_1 =1,1 e J_2 =0,9Hz); 2,50 (dd, 1H, J_1 =13,4 e J_2 =0,9Hz); 1,97 (dt, 1H, J_1 =15,0 e J_2 =0,9 Hz); 1,69 (ddd, 1H, J_1 =13,4, J_2 =2,2 e J_3 =1,1Hz); 1,59 (dd, 1H, J_1 =15,0 e J_2 =2,2Hz); 1,31 (s, 3H); 0,91 (s, 3H); 0,80 (s, 3H). **RMN** ¹³**C** (75 MHz, CDCl₃) δ : 207,7 (C=O); 64,0 (C); 61,2 (CH); 47,8 (CH₂); 42,5 (CH₂); 35,9 (C); 30,6 (CH₃); 27,6 (CH₃); 23,8 (CH₃). **IV** (filme) v_{max} : 2952; 2930; 2870; 1717; 1465; 1153 cm⁻¹. **EM** m/z (Intensidade relativa)(%): 154 (4); 139 (24); 111 (10); 97 (24); 83 (100); 69 (60); 55 (48).

7.2. Epóxido de Ciclo-Hexeno (2)

Procedimento: Para uma solução de ciclo-hexeno (1,48 g, 18,1 mmol) em diclorometano (28 mL), foi adicionada uma solução de ácido meta-cloro-perbenzóico 85% (8,5)g, 49,3 mmol) em diclorometano (70 mL), vagarosamente (tempo de adição 50 min), mantendo-se a temperatura a ~5 °C (banho de gelo). Deixou-se agitando à temperatura ambiente por 1 hora e 30 minutos. Após este tempo o excesso de peróxido foi destruído deixando-se agitar durante 1 hora com solução aquosa 10% de sulfito de sódio (140 mL). A fase aquosa foi extraída com diclorometano e as fases orgânicas reunidas e lavadas com solução de bicarbonato de sódio 5%, solução saturada de cloreto de sódio, secada com sulfato de magnésio e o solvente evaporado. O resíduo foi destilado horizontalmente (25°C, 0,5 mmHg), obtendo-se 1,15 g (65%) de um óleo incolor

Dados espectroscópicos

RMN ¹**H** (300 MHz, CDCl₃): δ 3,11 (s, 2H); 1,94 (m, 2H); 1,81 (m, 2H); 1,43 (m, 2H); 1,23 (m, 2H).

RMN ¹³**C** (75 MHz, CDCl₃): δ 52,1 (CH); 24,5 (CH₂); 19,5 (CH₂).

IV (filme) v_{max}: 2977; 2932; 1439; 1261 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 97 [(M-1)⁺] (14); 83 (100); 70 (22); 69 (30); 57 (33); 54(44); 50 (3); 44 (14).

7.3. 1-Metil-Ciclo-Hexanol (3b):

Procedimento: Em um balão de três bocas equipado com condensador de refluxo foi introduzido magnésio (aparas, 3,46 g, 142 mmol) e cristais de iodo. Sobre o magnésio foi adicionado, com auxilio de uma seringa, solução de iodeto de metila (8,97 mL, 144mmol) em éter (80 ml). Após o início da reação foram adicionados mais 10,0 mL de éter. A mistura foi agitada e o restante de iodeto de metila foi adicionado lentamente ao meio reacional dissolvido em éter. A agitação e o refluxo foram mantidos por mais 30 minutos. Após a dissolução de todo o magnésio a mistura reacional foi resfriada e em seguida adicionou-se uma solução de ciclo-hexanona (3a) (4,50 mL, 43,0 mmol) em éter (20,0 ml). A agitação foi mantida por 2 horas à temperatura ambiente. A mistura reacional foi transferida para um erlenmeyer de 500 mL contendo gelo picado. O extrato etéreo foi lavado com solução aquosa de ácido sulfúrico 30%, solução aquosa de tiossulfato de sódio 5% e seco com sulfato de magnésio, fornecendo 4,0 g (32,5 mmol) (rendimento bruto de 72%), o qual foi destilado à pressão reduzida (40°C, 1 mmHg), o que forneceu 2,76 g de produto puro. Rendimento: 50%.

Dados espectroscópicos

RMN ¹**H** (400 MHz, CDCl₃) δ: 1,52 (m, 10H); 1,20 (s, 3H)

RMN ¹³**C** (100 MHz, CDCl₃) δ: 69,9 (C); 39,4 (2 x CH₂); 29,5 (CH₃); 25,6 (CH₂); 22,7 (2 x CH₂).

IV(filme)v_{max}:3381; 2946; 2856; 1446; 1370; 1256; 1168; 1125cm⁻¹
EM *m*/*z* (Intensidade relativa)(%): 99 [(M-15)⁺] (13); 81 (16); 71 (100); 58 (34); 55 (12); 43 (62); 27 (22); 15 (15).

7.4. 1-Metil-Ciclo-Hexeno (3c):

Procedimento: Em um balão de duas bocas provido de funil de adição, short-path, agitação magnética e banho de óleo, adicionou-se ácido fosfórico 85% (0,53 g, 5,41 mmol). Em seguida o sistema foi até temperatura de 170°C adicionou-se aquecido uma e vagarosamente (10-15 min) o 1-metil-ciclo-hexanol (3,0 g, 26,30 mmol) (3b). Após o álcool ter sido introduzido, aumentou-se a temperatura do banho de óleo até 200°C e assim manteve-se por 15 minutos, destilando o produto à 90°C. Depois de terminada a destilação, separou-se as fases e secou-se a fase orgânica com sulfato de magnésio anidro. O produto foi destilado em um aparelho de destilação horizontal, obtendo-se 1,61 g do produto puro. Rendimento: 64%.

Dados espectroscópicos

RMN ¹**H** (400 MHz, CDCl₃) δ: 5,38 (m, 1H); 1,96 (m, 2H); 1,89 (m, 2H); 1,63 (s, 3H); 1,61 (m, 2H); 1,54 (m, 2H).

RMN ¹³**C** (100 MHz, CDCl₃) δ: 134,1 (C); 121,2 (CH); 30,1 (CH₂); 25,4 (CH₂); 24,0 (CH₃); 23,1 (CH₂); 22,5 (CH₂).

IV (filme) v_{max}: 3007; 2947; 2842; 1628; 1451; 1379; 1147 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 96 [M⁺] (2); 84 (44); 67 (4); 49 (19); 47 (25); 35 (15); 28 (100).

7.5. Epóxido de 1-Metil-Ciclo-Hexeno (3):

Procedimento: Para uma solução de MCPBA 50% (9,2 g; 26,8 mmol) e bicarbonato de sódio (2,9 g; 34,4 mmol) em diclorometano (66,0 mL), foi adicionado gota a gota uma solução de 1-metil-ciclo-hexeno (**3c**) (2,5 g, 26,0 mmol) em de diclorometano (5,0 mL), mantendo-se a temperatura entre 5-10°C (banho de gelo). Após a adição, a mistura reacional foi mantida sob agitação por 90 minutos na mesma temperatura. Após este tempo, foi adicionada uma solução de sulfito de sódio (1,30 g) em água (13,0 mL), deixando-se a solução agitando por trinta minutos à temperatura ambiente. Adicionou-se água (13,0 mL), a fase orgânica foi separada e lavada com solução aquosa 5% de carbonato de sódio (26,0 mL). As águas de lavagem foram reunidas e extraídas com diclorometano (13,0 mL). As fases orgânicas foram reunidas e secadas com sulfato de magnésio anidro, em seguida evaporou-se o solvente sob pressão reduzida, obtendo-se 2,07 g de epóxido. Rendimento: 71%.

Dados espectroscópicos

RMN ¹**H** (400 MHz, CDCl₃) δ : 2,96 (dt, 1H, J_1 =3,5 e J_2 =1,3Hz); 1,88 (m, 3H); 1,67 (ddd, 1H, J_1 =14,6; J_2 =8,1 e J_3 =5,6Hz); 1,42 (m, 2H); 1,30 (s, 3H); 1,2 (m, 2H).

RMN ¹³**C** (100 MHz, CDCl₃) δ: 59,6 (CH); 57,6 (C); 29,9 (CH₂); 24,8 (CH₂); 24,0 (CH₃); 20,0 (CH₂); 19,7 (CH₂).]

IV (filme) v_{max}: 2947; 2857; 1455; 1434; 1379; 1219; 1181; 1117; 1029 cm⁻¹

EM *m*/*z* (Intensidade relativa)(%): 112 [M⁺] (3); 111 95); 97 (88); 69 (29); 67 (22); 55 (49); 43 (100); 41 (46).

7.6. Epóxido de α -Pineno (4):

Procedimento²⁹ Para uma solução de MCPBA 50% (4,4 g, 12,7 mmol) e bicarbonato de sódio (1,4 g, 16,4 mmol) em diclorometano (62 mL), foi adicionado gota a gota uma solução de α -pineno (1,7 g, 12,3 mmol) em 5 mL de diclorometano, mantendo-se a temperatura entre 5-10°C (banho de gelo). Após a adição, a mistura reacional foi mantida sob agitação por mais 1 hora na mesma temperatura. Após este tempo, foi adicionado uma solução de 1,2 g de sulfito de sódio em 12 mL de água e deixou-se a solução agitando por mais 30 minutos à temperatura ambiente. Adicionou-se 12 mL de água, a fase orgânica foi separada e lavada com 25 mL de solução aquosa 5% de carbonato de sódio. As águas de lavagem foram reunidas e extraídas com 12 mL de diclorometano. As fases orgânicas foram reunidas e secadas com MgSO4 anidro, e em seguida evaporou-se o solvente a pressão reduzida. O resíduo foi destilado em um sistema de destilação horizontal (65°C, 2,5 mmHg) obtendo-se 1,6 g (85 %) do epóxido de α -pineno (**4**), na forma de um óleo incolor.

Dados Espectroscópicos:

RMN ¹**H** (300 MHz, CDCl₃): δ 3,04 (dd, 1H, *J*₁=4,0 e *J*₂=2,5Hz); 2,04 (ddd, 1H, *J*₁=10,0; *J*₂=5,0 e *J*₃=2,0Hz); 2,02 (ddd, 1H, *J*₁=13,0; *J*₂=9,0 e *J*₃=2,0Hz); 1,91 (t, 1H, *J*=5,0Hz); 1,79 (ddd, 1H, *J*₁=13,0; *J*₂=5,0 e *J*₃=4,0Hz); 1,72 (m, 1H); 1,63 (d, 1H, J=10,0Hz); 1,32 (s, 3H); 1,29 (s, 3H); 0,94 (s, 3H).

RMN ¹³**C** (75 MHz, CDCl₃): δ 59,6 (C); 56,2 (CH); 44,7 (CH); 40,1 (C); 39,3 (CH); 27,2 (CH₂); 26,3 (CH₃); 25,4 (CH₂); 22,0 (CH₃); 19,7 (CH₃).

IV (filme) v_{max}: 2976; 2931; 2872; 1468; 1447; 1430; 1375; 1269; 1092 cm⁻¹.
EM m/z (Intensidade relativa)(%): 152 (M)⁺(7); 137 (12); 134 (7); 109 (100); 91 (34); 84 (58); 69 (28); 55 (39); 41 (38).
7.7. Epóxido de Verbenona (5):

Procedimento: Para uma solução de L-(-)-verbenona (1,02 g, 6,8 mmol) em metanol (7,0 mL) foi adicionada uma solução de H_2O_2 30% (2 mL, 21 mmol). Em seguida adicionou-se lentamente uma solução aquosa de NaOH 6 mol/L (0,6 mL, 3,3 mmol). Durante a adição, a temperatura da reação foi mantida entre 15 e 20°C, resfriando-se com um banho de água gelada. Terminada a adição, a reação foi mantida sob agitação por 15 minutos com temperatura entre 20 e 25°C. Diluiu-se com 8 mL de água e a mistura resultante foi extraída com duas porções de 8 mL de éter etílico. A fase orgânica foi lavada com água, solução aquosa de NaCl e secada com sulfato de magnésio anidro, em seguida evaporou-se o solvente sob pressão reduzida, obtendo-se 0,824 g do epóxido, na forma de um óleo incolor. Rendimento: 73%.

Dados espectroscópicos

RMN ¹**H** (400 MHz, CDCl₃): δ 3,17 (d, 1H, *J*=1,8Hz); 2,44 (td, 1H, *J*₁=6,0 e *J*₂=1,8Hz); 2,33 (t, 1H, *J*=6,0Hz); 2,29 (dt, 1H, *J*₁=10,1; *J*₂=6,0Hz); 2,07 (d, 1H, *J*=10,1Hz); 1,51 (s, 3H); 1,43 (s, 3H); 1,02 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 206,2 (C); 59,9 (C); 58,9 (CH); 56,5 (CH); 49,8 (C); 45,7 (CH); 26,5 (CH₃); 21,7 (CH₂); 21,6 (CH₃); 20,9 (CH₃).

IV (filme) v_{max}: 2977; 2873; 1710; 1467;1408; 1250 cm⁻¹.
EM m/z (Intensidade relativa)(%): 151 [(M-15)⁺] (6); 137 (13); 83 (48);
67 (7); 55 (87); 39 (100); 27 (89).

7.8. Epóxido de β -Pineno (6):

Procedimento: Para uma solução de MCPBA 70% (5,0 g, 14,5 mmol) e bicarbonato de sódio (1,56 g, 18,6 mmol) em diclorometano (36 mL), foi adicionado gota a gota uma solução de (-)- β -pineno (1,94 g, diclorometano, mantendo-se a 14,2 mmol) em 3,0 mL de temperatura entre 5-10°C (banho de gelo). Após a adição, a mistura reacional foi mantida sob agitação por mais 90 minutos na mesma temperatura. Após este tempo, foi adicionado uma solução de 0,70 g de sulfito de sódio em 7,0 mL de água e deixou-se a solução agitando por mais trinta minutos a temperatura ambiente. Adicionou-se 7,0 mL de água e a fase orgânica foi separada e lavada com 16 mL de solução aquosa 5% de carbonato de sódio. As duas águas de lavagem foram reunidas e extraídas com 7,0 mL de diclorometano. As fases orgânicas foram reunidas e secadas com sulfato de magnésio anidro, e o solvente evaporado, obtendo-se 1,40 g do epóxido, na forma de um óleo incolor. Rendimento: 65 %.

Dados Espectroscópicos

RMN ¹**H** (400 MHz, CDCl₃):8 2,77 (d, 1H, *J*=4,8Hz); 2,61 (d, 1H, *J*=4,8Hz); 2,28 (dtd, 1H, *J*₁=10,3; *J*₂=5,6; *J*₃=1,5Hz); 2,16 (ddd, 1H, *J*₁=15,0; *J*₂=10,3 e *J*₃=8,3Hz); 1,99 (tdd, 1H, *J*₁=5,6; *J*₂=4,3 e *J*₃=1,5Hz); 1,74 (m, 2H); 1,69 (ddd, 1H, *J*₁=15,0; *J*₂=8,3 e *J*₃=1,5Hz); 1,52 (t, 1H, *J*=5,6Hz); 1,66 (d, 1H, *J*=10,4Hz); 1,25 (s, 3H); 0,93 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 61,9 (C); 56,8 (CH); 49,3 (CH₂); 41,1 (C); 40,5 (CH₂); 26,5 (CH₂); 25,6 (CH); 23,9 (CH₃); 22,7 (CH₃); 21,6 (CH₂).

7.9. Epóxido de Carvona (7):

Procedimento: Para uma solução de L-(-)-carvona (1,02 g, 6,8 mmol) em metanol (7,0 mL) foi adicionada uma solução de H₂O₂ 30% (2 mL, 21 mmol). Em seguida adicionou-se lentamente uma solução aquosa de NaOH 6 mol/L (0,6 mL, 3,3 mmol). Durante a adição, a temperatura da reação foi mantida entre 15 e 20°C, resfriando-se com um banho de água gelada. Terminada a adição, a reação foi mantida sob agitação por 15 minutos com temperatura entre 20 e 25°C. Diluiu-se com 8 mL de água e a mistura resultante foi extraída com duas porções de 8 mL de éter etílico. A fase orgânica foi lavada com água, solução aquosa de NaCl e secada com sulfato de magnésio anidro, em seguida evaporou-se o solvente sob pressão reduzida, obtendo-se 0,903 g do epóxido, na forma de um óleo incolor. Rendimento: 80 %.

Dados espectroscópicos

RMN ¹**H** (400 MHz, CDCl₃): δ 4,79 (m, 1H); 4,72 (m, 1H); 3,45 (dd, 1H, J_1 =3,0 e J_2 =1,3Hz); 2,72 (tt, 1H, J_1 =11,5 e J_2 =4,6Hz); 2,59 (ddd, 1H, J_1 =17,6, J_2 =4,6 e J_3 =1,3Hz); 2,37 (ddddd, 1H, J_1 =14,6; J_2 =4,6; J_3 =3,0; J_4 =1,3 e J_5 =0,8 Hz); 2,03 (ddd, 1H, J_1 =17,6; J_2 =11,5 e J_3 = 0,8Hz); 1,91 (ddd, 1H, J_1 =14,6, J_2 =11,5 e J_3 =1,3Hz); 1,70 (m, 3H); 1,39 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 205,8 (C=O); 146,7 (C); 110,9 (CH₂); 61,7 (CH); 59,2 (C); 42,2 (CH₂); 35,4 (CH); 29,1 (CH₂); 20,1 (CH₃); 15,7 (CH₃).

IV (filme) v_{max}: 2977; 2873; 1710; 1467;1408; 1250 cm⁻¹.

EM *m*/*z* (Intensidade relativa) (%): 137 [(M-29)⁺] (5); 123 (14); 109 (10); 85 (35); 81 (14); 67 (35); 43 (100); 42 (57).

7.10. Epóxido de Cromona (8):

Procedimento: Para uma solução de cromona (1 g, 6,8 mmol) em metanol (8 mL), foi adicionada uma solução de H_2O_2 30% (2 mL, 21 mmol). Em seguida adicionou-se lentamente uma solução aquosa de NaOH 6 mol/L (0,6 mL, 3,3 mmol). Durante a adição, a temperatura da reação foi mantida entre 15 e 20 °C resfriando com um banho de água gelada. Terminada a adição, a reação foi mantida em agitação por 15 minutos com temperatura entre 20 e 25 °C. Diluiu-se com 8 mL de água e a mistura resultante foi extraída com duas porções de 8 mL de éter etílico. As frações orgânicas foram lavadas com água e secadas com MgSO₄ anidro. O solvente foi removido sob pressão reduzida e o produto foi purificado por recristalização usando uma mistura de metanol e hexano como solvente, obtendo-se 0,805 (73%), na forma de um sólido branco, p.f. 63-64°C (lit.²⁸ p.f. 65-66°C).

Dados Espectroscópicos:

RMN ¹**H** (400 MHz, CDCl₃): δ 7,92 (dd, 1H, *J*₁=8,0 e *J*₂=1,7Hz); 7,59 (ddd, 1H, *J*₁=8,4; *J*₂=7,1 e *J*₃=1,7 Hz); 7,18 (ddd, 1H, *J*₁=8,0; *J*₂=7,1 e *J*₃=1,0Hz); 7,08 (dd, 1H, *J*₁=8,4 e *J*₂=1,0 Hz); 5,69 (d, 1H, *J*=2,4Hz); 3,73 (d, 1H, *J*=2,4 Hz).

RMN ¹³C (100 MHz, CDCl₃): δ 188,2 (C=O); 155,4 (C); 136,3 (CH); 127,2 (CH); 123,4 (CH); 119,8 (C); 118,0 (CH); 77,1 (CH); 55,4 (CH).
IV (filme) v_{max}: 3054; 2933; 1607; 1578; 1472; 1383; 1221; 1137; 1005 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 162 (M)⁺ (65); 134 (99); 121 (26); 105 (100); 77 (72); 63 (36); 51 (37); 29 (76).

7.11. Procedimento Geral das Reações dos Epóxidos 1 - 8 com NbCl₅

Procedimento: Para uma solução de NbCl₅ (0,5; 0,25; 0,125 e 0,0625 mmol) em 1,0 mL de acetato de etila anidro foi adicionada uma solução de epóxido (1,0 mmol) em 1,0 mL de acetato de etila anidro. A adição foi feita à temperatura ambiente, 0 ou à -78°C e sob atmosfera de N₂. O tempo de reação variou de 1 a 480 minutos. Em seguida adicionou-se solução aquosa de ácido cítrico 10% (2,0 mL) *. A mistura foi diluída com água (5 mL) e solvente (10 mL). As fases foram separadas e a fase orgânica foi lavada com solução aquosa de NaHCO₃ 5% (3 x 10 mL) e com solução aquosa saturada de NaCl (2 x 10 mL), secou-se sob MgSO₄ anidro, e em seguida evaporou-se o solvente a pressão reduzida. A maneira de purificação de cada composto foi apresentada nas discussões dos resultados.

* Nas reações à -78°C foi utilizada solução de ácido cítrico 10% THF:H₂O, 1:1

Epóxi do	Massa de NbCl₅ (mg)	NbCl₅(eq.)	Conversão epóxido	т. (°С)	Tempo (min.)	Rend. Bruto* , (%)	Proporçá produto	ăo dos os, %
							9	10
1	135	0,5	100	t.a.	1	81	80	20
1	33,8	0,125	100	t.a.	5	73	90	10
1	135	0,5	100	0	1	70	86	14
1	33,8	0,125	100	0	10	70	94	6
1	135	0,5	100	-78	20	86	95	5
							11	12
2	135	0,5	100	t.a.	1	62	77	23
2	33,8	0,125	100	t.a.	1	69	85	15
2	135	0,5	100	0	1	65	85	15
2	33,8	0,125	100	0	1	70	90	10
2	135	0,5	100	-78	1	77	87	13
2	33,8	0,125	100	-78	1	75	91	9
							13	14
3	135	0,5	100	t.a.	1	74	43	57
3	16,8	0,0625	100	t.a.	1	69	50	50
3	135	0,5	100	0	1	69	52	48
3	16,8	0,0625	100	0	1	73	60	40
3	135	0,5	100	-78	1	72	70	30

Tabela 178 – Dados das reações dos epóxidos 1 - 8 com NbCl₅ em diferentes condições, com acetato de etila como solvente.

Parte	Experim	ental								244
3	16,8	0,0625	100	-78	1	75	8	1		19
							15	16	17	18
4	135	0,5	100	t.a.	1	-	Mist	ura co	ompl	exa
4	135	0,5	100	0	1	-	Mist	ura co	ompl	exa
4	16,8	0,0625	100	0	1	67	39	30	26	5
4	135	0,5	100	-78	1	69	43	43	5	9
4	33,8	0,125	100	-78	1	71	45	38	14	3
4	16,8	0,0625	100	-78	1	75	47	27	24	2
							Alde	ído		19
5	135	0,5	100	t.a.	1	70	Mist	ura co	omple	exa
5	16,8	0,0625	34	t.a.	480	71**	65	5		35
5	135	0,5	100	-78	60	69	50	C		50
5	67,5	0,25	100	-78	200	65	57	7		43
							20	2	1	22
6	135	0,5	100	t.a	1	65	41	4	2	17
6	16,8	0,0625	100	t.a.	1	67	25	5	6	19
6	135	0,5	100	0	1	69	31	4	.9	20
6	16,8	0,0625	100	0	1	70	21	6	5	14
6	135	0,5	100	-78	1	73	20	5	2	28
6	16,8	0,0625	100	-78	1	75	12	7	5	13
							2:	3		24
7	135	0,5	100	t.a.	10	81	38	3		62
7	33,8	0,125	100	t.a.	30	69	25	5		75
7	135	0,5	100	0	30	78	30	C		70
7	67,5	0,25	100	0	120	80	27	7		73
7	33,8	0,125	100	0	180	86	1	1		89
7	135	0,5	0	-78	480	_	_	-		—
								25		
8	135	0,5	100	t.a.	1	84		100)	

* Baseado no produto em maior proporção. ** Nos casos em que o material de partida foi parcialmente recuperado, o rendimento dos produtos foi calculado considerando apenas a massa de material de partida efetivamente transformado.

Dados Espectroscópicos:

Composto(**9**): (±)-1,4,4-Trimetil-2-oxo-ciclopentanocarbaldeído

RMN ¹**H** (300 MHz, CDCl₃): δ 9,48 (s, 1H); 2,60 (dd, 1H, *J*₁=13,7 e *J*₂=1,1Hz); 2,25 (d, 1H, *J*=17,2Hz); 2,17 (dd, 1H, *J*₁=17,2 e *J*₂=1,1 Hz); 1,61 (d, 1H, *J*=13,7Hz); 1,36 (s, 3H); 1,17 (s, 3H); 1,03 (s, 3H).

RMN ¹³**C** (75 MHz, CDCl₃): δ 215,3 (C=O); 198,7 (CHO); 63,1 (C); 53,1 (CH₂); 44,2 (CH₂); 33,8 (C); 29,6 (CH₃); 28,9 (CH₃); 21,2 (CH₃).

IV (filme) v_{max}:2956; 2868; 2712; 1730; 1714; 1453; 1370; 1149cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 139 [(M-15)⁺] (21); 126 (13); 111 (23); 97 (22); 83 (100); 69 (47); 55 (40); 41 (49).

Composto (10): 2-Hidróxi-3,5,5-trimetil3,5,5-trimetil-2-ciclohexenona

RMN ¹**H** (300 MHz, CDCl₃): δ 6,01 (sl, 1H); 2,34 (s, 2H); 2,24 (s, 2H); 1,88 (s, 3H); 1,06 (s, 6H).

RMN ¹³**C** (75 MHz, CDCl₃): δ 194,1 (C=O); 143,0 (C); 127,9 (C); 49,3 (CH₂); 44,7 (CH₂); 33,5 (CH₃); 28,4 (2 x CH₃); 17,1 (CH₃).

IV (filme) v_{max}: 3402; 2947; 2876; 1666; 1640; 1405; 1173 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 154 (M)⁺ (56); 126 (9); 111 (24); 98 (42); 70 (100); 55 (51); 41 (52); 27 (21).

Composto (**11**): (±)-*trans*-2-Cloro-ciclo-hexanol

RMN ¹**H** (300 MHz, CDCl₃): δ 3,73 (ddd, 1H, J_1 =11,5, J_2 =9,3 e J_3 =4,5Hz); 3,51 (ddd, 1H, J_1 =10,2, J_2 =9,3 e J_3 =4,5Hz); 2,58 (sl, 1H, OH); 2,23 (m,1H); 2,11 (m, 1H); 1,73 (m, 3H); 1,30 (m, 3H).

RMN ¹³**C** (75 MHz, CDCl₃): δ 75,4 (CH); 67,6 (CH); 35,2 (CH₂); 33,1 (CH₂); 25,7 (CH₂); 24,0 (CH₂).

IV (filme) v_{max}: 3411; 2916; 1451; 1083; 961; 737cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 136 [(M - 2)⁺] (12); 134 (M)⁺ (36); 99 (61); 98 (100); 81 (93); 79 (34); 70 (39); 57 (22); 41 (30).

Composto (12): (±)-trans-2-Hidróxi-ciclo-hexil-acetato

RMN ¹**H** (300 MHz, CDCl₃): δ 4,57 (ddd, 1H, J_1 =10,3; J_2 =8,9 e J_3 =4,8Hz); 3,54 (ddd, 1H, J_1 = 10,4; J_2 =8,9 e J_3 =4,8Hz); 2,77 (sl, 1H, OH); 2,08 (s, 3H); 2,01 (m, 2H); 1,71 (m, 2H); 1,31 (m, 4H).

RMN ¹³**C** (75 MHz, CDCl₃): δ 171,3 (C=O); 77,9 (CH); 72,3 (CH); 32,9 (CH₂); 29,8 (CH₂); 23,7 (CH₂); 23,6 (CH₂); 21,2 (CH₃).

IV (filme) v_{max}: 3441; 2947; 2857; 1730; 1451; 1375; 1248 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 158 (M)⁺ (63); 83 (24); 79 (29); 70 (53); 57 (22); 43 (100); 41 (31); 28 (12).

Composto (**13**): (±)-*cis*-2-Cloro-2-metil-ciclo-hexanol

RMN ¹**H** (300 MHz, CDCl₃): δ 3,77 (dd, 1H, *J*₁=9,5 e *J*₂=4,3Hz); 2,57 (sl, 1H); 2,11 (m, 1H); 1,91 (m, 2H); 1,67 (m, 2H); 1,57 (s, 3H); 1,40 (m, 3H).

RMN ¹³**C** (75 MHz, CDCl₃): δ 77,1 (CH); 76,4 (C); 40,7 (CH₂); 30,1 (CH₂); 23,3 (CH₂); 23,2 (CH₂); 22,8 (CH₃).

IV (filme)v_{max}:3456; 2932; 2872; 1451; 1375; 1248; 1084; 1041 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 112 [(M-Cl)⁺] (5); 84 (3); 68 (10); 56 (13); 55 (16); 41 (21); 32 (25); 28 (100).

Composto (**14**): (±)-*cis*-1-Metil-ciclo-hexano-1,2-diol

RMN ¹H (300 MHz, CDCl₃): δ 3,48 (m, 1H); 1,86 (m, 1H); 1,74 (m, 3H); 1,62 (m, 1H); 1,33 (m, 3H); 1,20 (s, 3H).

RMN ¹³**C** (75 MHz, CDCl₃): δ 77,3 (CH); 73,9 (C); 38,6 (CH₂); 31,0 (CH₂); 24,0 (CH₂); 23,3 (CH₂); 19,7 (CH₃).

IV (filme) v_{max}: 3381; 2947; 2857; 1451; 1079; 1050 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 84 [(M-46)⁺] (44); 51 (28); 49 (88); 47 (18); 37 (6); 35 (16); 32 (28); 28(100).

Composto (15): (±)-2,2,3-Trimetil-ciclo-pent-3-ene-1-acetaldeído

RMN ¹**H** (400 MHz, CDCl₃): δ 9,80 (t, 1H, *J*=2,5Hz); 5,24 (ddq, 1H, *J*₁=2,5; *J*₂=2,0 e *J*₃=1,8 Hz); 2,53 (ddd, 1H, *J*₁=15,5; *J*₂=4,0 e *J*₃=2,5 Hz); 2,40 (m, 2H); 2,31 (m, 1H); 1,89 (dtd, 1H, *J*₁=4,0; *J*₂=2,5 e *J*₃= 1,8Hz); 1,62 (m, 3H); 1,00 (s, 3H); 0,79 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 203,1 (CHO); 148,0 (C); 121,6 (CH); 46,9 (C); 45,1 (CH₂); 44,2 (CH); 35,5 (CH₂); 25,6 (CH₃); 20,0 (CH₂); 12,6 (CH₃).

IV (filme)v_{max}:2963; 2920; 1726; 1633; 1446; 1366; 1120; 1073 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 152 (M)⁺] (2); 137 (3); 119 (5); 108 (100); 105 (10); 93 (62); 67 (27); 41 (20).

Composto (16): (±)-trans-5-(1-Cloro-1-metil-etil)-2-metil-2-ciclohexen-1-ol

RMN ¹**H** (400 MHz, CDCl₃): δ 5,56 (dquint, 1H, *J*₁=4,5 e *J*₂=1,5Hz); 4,06 (t, 1H, *J*=3,5Hz); 2,23 (dddd, 1H, *J*₁=14,2; *J*₂=7,0; *J*₃=3,5 e *J*₄= 1,5Hz); 2,10 (ddt, 1H, *J*₁=13,4; *J*₂= 4,5 e *J*₃=1,5Hz); 1,90 (m, 3H); 1,79 (s, 3H); 1,60 (s, 3H); 1,56 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 134,6 (C); 125,2 (CH); 74,3 (C); 68,9 (CH); 40,7 (CH); 33,9 (CH₂); 31,1(CH₃); 30,7 (CH₃); 28,0 (CH₂); 21,2 (CH₃).

IV (filme) v_{max}: 3327; 2993; 2933; 2872; 1455; 1438; 1370; 1158; 1124; 1056 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 137 [(M-51,5)⁺] (46); 109 (63); 93 (31); 69 (34); 55 (38); 43 (78); 41 (100); 27 (46).

Composto (**17**): (±)-*trans*-5-Isopropenil-2-metil-2-ciclo-hexen-1-ol

RMN ¹**H** (400 MHz, CDCl₃): δ 5,59 (ddq, 1H, *J*₁=5,0; *J*₂=2,0 e *J*₃=1,5 Hz); 4,75 (dq, 1H, *J*₁=2,0 e *J*₂=1,5Hz); 4,73 (dq, 1H, *J*₁=2,0 e *J*₂=1,0 Hz); 4,03 (dt, 1H, *J*₁=4,0 e *J*₂=2,0Hz); 2,33 (tddd, 1H, *J*₁=12,0; *J*₂= 5,0; *J*₃=4,0 e *J*₄= 2,0Hz); 2,15 (dtt, 1H, *J*₁=17,0; *J*₂=5,0 e *J*₃=1,5Hz); 1,94 (dddd, 1H, *J*₁=13,6; *J*₂=4,0; *J*₃=2,0 e *J*₄=1,5); 1,88 (m, 1H); 1,83 (m, 1H); 1,81 (m, 3H); 1,75 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 149,2 (C); 134,1 (C); 125,4 (CH); 109,0 (CH₂); 68,6 (CH); 36,7 (CH₂); 35,2 (CH); 31,0 (CH₂); 20,9 (2 x CH₃).

IV (filme)v_{max}:3388; 2963; 1646; 1446; 1374; 1289; 1260; 1056 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 109 [(M-43)⁺] (6); 70 (6); 69 (9); 61 (9); 55 (6); 43 (100); 29 (40); 27 (27).

Composto (18): (±)-cis-6-Cloro-1,7,7-trimetil-biciclo[2.2.1]-heptan-2-ol

RMN ¹**H** (400 MHz, CDCl₃): δ 4,39 (ddd, 1H, J_1 =11,0; J_2 =4,8 e J_3 =2,3 Hz); 4,18 (sl, 1H); 2,66 (dddd, 1H, J_1 =13,6; J_2 =11,0; J_3 =4,8 e J_4 =3,2 Hz); 2,51 (dddd, 1H, J_1 =13,6; J_2 =11,0; J_3 =4,8 e J_4 =3,2Hz), 1,80 (t, 1H, J=4,8Hz); 1,72 (dd, 1H, J_1 =13,6 e J_2 =4,8Hz); 1,30 (dd, 1H, J_1 =13,6 e J_2 =4,8Hz); 1,08 (s, 3H); 0,92 (s, 3H); 0,88 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 79,7 (CH); 67,0 (CH); 51,4 (C); 49,1 (C); 43,1 (CH); 40,7 (CH₂); 39,5 (CH₂); 20,1 (2 x CH₃); 11,6 (CH₃).

IV (filme) v_{max}: 3327; 2993; 2933; 2872; 1455; 1438; 1370; 1158; 1124; 1056 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 137 [(M-51,5)⁺] (24); 135 (40); 109 (51); 108 (100); 93 (66); 67 (21); 41 (57); 27 (39).

Composto(19):trans-6-(1-Cloro-1-metil-etil)-2-hidróxi-3-metilciclo-hex-3-enona

RMN ¹**H** (400 MHz, CDCl₃): δ 5,61 (m, 1H); 4,78 (m, 1H); 2,69 (m, 1H); 2,58 (m, 2H); 1,81 (m, 3H); 1,73 (s, 3H); 1,65 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 209,3 (C); 136,8 (C); 120,6 (CH); 75,6 (CH); 69,8 (C); 53,9 (CH); 32,1 (CH₃); 31,3 (CH₃); 26,6 (CH₂); 17,9 (CH₃).

Composto (**20**): (4-Isoproprenil-ciclo-hex-1-enil)-metanol

RMN ¹**H** (400 MHz, CDCl₃): δ 5,70 (m, 1H); 4,73 (m, 2H); 4,01 (m, 2H); 2,15 (m, 4H); 2,10 (sl, 1H, OH); 1,97 (m, 1H); 1,87 (m, 1H); 1,73 (m, 4H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 148,9 (C); 136,4 (C); 121,6 (CH); 107,8 (CH₂); 66,4 (CH₂); 40,2 (CH); 29,5 (CH₂); 26,6 (CH₂); 25,2 (CH₂); 19,9 (CH₃).

Composto (**21**): [4-(1-Cloro-1-metil-etil)-ciclo-hex-1-enil] metanol

RMN ¹**H** (400 MHz, CDCl₃): δ 5,68 (m, 1H); 4,01 (d, 1H, *J*=14,6Hz); 3,99 (d, 1H, *J*=14,6Hz); 2,26 (m, 1H); 2,17 (m, 1H); 2,10 (m, 1H); 1,98 (m, 1H); 1,77 (dddd, 1H, *J*₁=12,0; *J*₂=11,0; *J*₃=4,0 e *J*₄=2,0Hz); 1,75 (m, 1H); 1,60 (s, 3H); 1,56 (m, 3H); 1,39 (ddd, 1H, *J*₁=12,0; *J*₂=6,0 e *J*₃=1,0Hz).

RMN ¹³**C** (100 MHz, CDCl₃): δ 137,8 (C); 122,3 (CH); 74,6 (C); 67,3 (CH₂); 46,9 (CH); 31,0 (CH₃); 30,3 (CH₃); 27,5 (CH₂); 26,8 (CH₂); 24,8 (CH₂).

Composto (22): 2-[4-(Hidróxi-metil) ciclo-hex-3-enil) propan-2-ol

RMN ¹**H** (400 MHz, CDCl₃): δ 5,62 (m, 1H); 3,95 (d, 1H, *J*=14,0Hz); 3,91 (d, 1H, *J*=14,0Hz); 2,05 (m, 3H); 1,89 (m, 1H, dddt, *J*₁=11,0; *J*₂=5,0; *J*₃=2,5 e *J*₄=2,0Hz) 1,79 (m, 1H); 1,48 (dddd, 1H, *J*₁=13,0; *J*₂=12,0; *J*₃=5,0 e *J*₄=2,0Hz); 1,20 (tdd, 1H, *J*₁=12,0; *J*₂=11,0 e *J*₃=5,0 Hz); 1,14 (s, 3H); 1,12 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 136,5 (C); 121,4 (CH); 71,7 (C); 66,1 (CH₂); 44,1 (CH); 26,4 (CH₃); 25,6 (CH₂); 25,5 (CH₂); 25,4 (CH₃); 22,6 (CH₂).

Composto(23):trans-2-Hidróxi-5-isopropenil-2-metil-3-oxo-ciclohexil acetato

RMN ¹**H** (400 MHz, CDCl₃): δ 4,88 (dd, 1H J_1 =9,5 e J_2 =3,8Hz); 4,81 (m, 1H); 4,67 (m, 1H); 2,80 (ddd, 1H, J_1 =13,9, J_2 =5,0 e J_3 =1,7Hz); 2,64 (quint, 1H, J=5,0Hz); 2,57 (dd, 1H, J_1 =13,9 e J_2 =5,0Hz); 2,30 (dddd, 1H, J_1 =13,8; J_2 =5,0; J_3 =3,8 e J_4 =1,7Hz); 2,02 (s, 3H); 1,83 (ddd, 1H, J_1 =13,8; J_2 =9,5 e J_3 =5,0 Hz); 1,72 (m, 3H); 1,30 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 211,1 (C); 170,5 (C); 145,6 (C); 112,9 (CH₂); 78,0 (C); 76,2 (CH); 40,8 (CH₂); 38,5 (CH); 30,4 (CH₂); 21,9 (CH₃); 21,5 (CH₃); 20,7 (CH₃).

Composto(24):trans-2-Cloro-3-hidróxi-5-isopropenil-2-metil-ciclohexanona

RMN ¹**H** (400 MHz, CDCl₃): δ 4,81 (m, 1H); 4,78 (m, 1H); 4,26 (dd, 1H, J_1 =3,7 e J_2 =2,6Hz); 3,04 (dd, 1H, J_1 =13,8 e J_2 =12,6Hz); 2,84 (tt, 1H, J_1 =12,6 e J_2 =3,7Hz); 2,43 (ddd, 1H, J_1 =14,1; J_2 =12,6 e J_3 =2,6 Hz); 2,38 (ddd, 1H, J_1 =13,8; J_2 =3,7 e J_3 =2,2Hz); 1,93 (dtd, 1H, J_1 =14,1; J_2 =3,7 e J_3 =2,2 Hz); 1,76 (m, 3H); 1,65 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 205,4 (C); 146,5 (C); 110,6 (CH₂); 76,8 (CH); 68,0 (C); 41,1 (CH₂); 39,0 (CH); 32,8 (CH₂); 22,1 (CH₃); 20,3 (CH₃).

Composto(25): 3-Hidróxi-cromona

RMN ¹**H** (400 MHz, CDCl₃): δ 8,23 (dd, 1H, *J*₁=8,0 e *J*₂=1,5Hz); 8,03 (s, 1H); 7,69 (ddd, 1H, *J*₁=8,6; *J*₂=7,1 e *J*₃=1,5Hz); 7,50 (d, 1H, *J*=8,6 Hz); 7,41 (ddd, 1H, *J*₁=8,0; *J*₂=7,1 e *J*₃=1,5 Hz).

RMN ¹³**C** (100 MHz, CDCl₃): δ 174,0 (C=O); 156,3 (C); 142,1 (C); 139,9 (CH); 133,6 (CH); 125,5 (CH); 124,8 (CH); 122,5 (C); 118,6 (CH).

IV (filme) v_{max} : 3282; 3043; 1637; 1607; 1565; 1472; 1421; 1285; 1154 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 162 (M)⁺ (71); 134 (29); 120 (10); 105 (100); 77 (48); 51 (39); 50 (44); 29 (48).

7.12. 3-Oxo-ciclo-hex-1-enil-acetato (28)

(8,93 **Procedimento**:⁸⁰ Para 1g mmol) da β-dicetona 27 (representada na sua forma enólica) foram adicionados anidrido acético (2 mL), piridina (1,5 mL) e DMAP (10 mg) e a mistura resultante foi agitada, à temperatura ambiente e sob atmosfera de N_2 , por 2 horas. Éter etílico (20 mL) foi adicionado, as fases foram separadas e a fase etérea foi lavada com solução aquosa de CuSO₄ 20% (3 x 10 mL), sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaCl (2 x 10 mL). Após a secagem da fase orgânica com MgSO₄ anidro o solvente foi evaporado com vácuo, obtendo-se 0,990 g do produto 28 na forma de um óleo amarelo. Rendimento: 72 %

Dados Espectroscópicos:

RMN ¹**H** (300 MHz, CDCl₃): δ 5,89 (t, 1H, *J*=1,1Hz); 2,54 (td, 2H, *J*₁ = 6,2 e *J*₂=1,1Hz); 2,39 (t, 2H, *J*=6,2Hz); 2,22 (s, 3H); 2,05 (quint, 2H, *J*=6,2Hz).

RMN ¹³**C** (75 MHz, CDCl₃): δ 199,2 (C=O); 169,5 (C); 166,9 (C=O); 116,8 (CH); 36,2 (CH₂); 27,8 (CH₂); 20,7 (CH₃); 20,7 (CH₂).

IV (filme) v_{max} : 2963; 2887; 1773; 1675; 1641; 1429; 1361; 1196; 1124 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%):112 [(M-42)⁺] (4); 84 (23); 69 (9); 55 (4); 43 (100); 42 (11); 39 (11); 27 (10).

7.13. **3-metil-ciclo-hex-2-enona (30)**:

Procedimento:⁸¹ Para uma solução de acetoacetato de etila (12,6 g, 96,9 mmol) e formaldeido 40% (3,67 g, 48,9 mmol) foi adicionada, sob agitação e gota a gota uma solução de piperidina (0,3 mL) em etanol (1,2 mL), de forma a manter a temperatura da mistura reacional entre 20 e 30°C. Após agitação por 4 horas a mistura foi deixada em repouso por uma noite. A camada oleosa inferior foi então separada e lavada com água (3 x 15 mL). Adicionou-se 50 mL de solução aquosa de H₂SO₄ 15% e refluxou-se por 11 horas. A mistura foi resfriada e neutralizada com hidróxido de amônio. O produto bruto foi extraído com éter etílico (3 x 15 mL), e após secagem com MgSO₄ anidro o solvente foi removido com vácuo. O produto foi destilado com um sistema de destilação horizontal a 74°C (1,5 mmHg), obtendo-se 6,82 g da ciclo-enona **30** na forma de um óleo incolor. Rendimento: 64 %

Dados Espectroscópicos:

RMN ¹**H** (400 MHz, CDCl₃): δ 5,86 (s, 1H); 2,32 (m, 4H); 2,01 (m, 2H); 1,97 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 200,0 (C=O); 163,2 (C); 126,9 (CH); 37,3 (CH₂); 31,2 (CH₂); 24,7 (CH₃); 22,8 (CH₂).

IV (filme) v_{max}: 3039; 2963; 2872; 1677; 1629; 1429; 1383; 1255; 1196; 1022 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 110 (M)⁺ (5); 82 (89); 67 (8); 54 (32); 41 (10); 39 (40); 32 (25); 28 (100).

7.14.Procedimento Geral para as Reações de Diels-Alder e Substituição Eletrofílica na presença NbCl₅.

Procedimento: Para uma solução de NbCl₅ (0,135 g, 0,5 mmol) em 1,0 mL de solvente anidro (éter etílico, diclorometano ou acetato de etila), mantida à temperatura ambiente ou -78°C e sob atmosfera de N₂, foi adicionada uma solução da ciclo-enona (1,0 mmol) em 1,0 mL do solvente anidro; nos casos em que um dieno (ciclopentadieno ou furanos) foram adicionados, esta solução continha também 2,0 mmol do dieno. Em seguida adicionou-se solução aquosa de ácido cítrico* 10% (2,0 mL). A mistura foi diluída com água (5,0 mL) e solvente (10,0 mL), as fases foram separadas e a fase orgânica foi lavada com solução aquosa saturada de NaHCO₃ (3 x 10,0 mL) e com solução aquosa saturada de NaHCO₃ (3 x 10,0 mL) e com solução aquosa saturada de NaHCO₃ secou-se sob MgSO₄ anidro, e em seguida evaporou-se o solvente a pressão reduzida. Os produtos foram purificados por cromatografia de coluna em sílicagel, eluindo-se com hexano:acetato de etila, 8 : 2.

 * Nas reações à -78°C utilizou-se uma solução de ácido cítrico 10 %, 1:1, H2O e THF.

Ciclo- Enona	Dieno	Solvente	т. °С	tempo(min.)	Rend. Bruto(%)	Produto (%)		
						_	_	
26	31	EtOAc	t. a.	180	42	34		
26	31	EtOAc	- 78	90	74	34		
27	31	Et_2O	t. a.	60	28	3	35	
27	31	CH_2Cl_2	t. a.	90	36	3	5	
27	31	EtOAc	t. a.	120	40	30	5	
28	31	Et_2O	t. a.	60	30	3	5	
28	31	CH_2Cl_2	t. a.	120	32	35	5	
28	31	EtOAc	t. a.	90	42	30	5	
29	31	EtOAc	*				-	
30	31	EtOAc	*					
						35	36	
27		Et_2O	t. a.	20	57	100	0	
27		CH_2Cl_2	t. a.	30	68	100	0	
27		EtOAc	t. a.	30	60**	5	95	
28		Et_2O	t. a.	20	68	100	0	
28		CH_2Cl_2	t. a.	20	80	100	0	
28		EtOAc	t. a.	20	83**	15	85	
26	32	EtOAc	t. a.	15	66	37	7	
26	32	EtOAc	- 78	90	74	37	7	
						38	39	
26	33	EtOAc	t. a.	5	65**	23	77	
26	33	EtOAc	- 78	40	74**	95	5	
						40	41	
30	33	EtOAc	t. a.	300	68**	40	60	
30	33	EtOAc	- 78	600***		100	0	

Tabela 179 - Dados das reações entre os dienófilos (ciclo-enonas) 26, 27, 28, 29, **30** e dienos **31**, **32** e **33** na presença de NbCl₅.

* Ambas reações foram realizadas à temperatura ambiente e em refluxo, mesmo após várias horas de reação não se verificou a formação de nenhum produto. ** Baseado no produto em maior proporção

*** Depois de 600 minutos de reação apenas 50% do material de partida havia sido transformado

Dados Espectroscópicos:

Composto (34): 4,4a,6,7,8,8a-hexa-hidro-1,4-metano-naftalen-5(1*H*)-ona

RMN¹H (300 MHz, CDCl₃): δ 6,19 (dd, 1H, J_1 =5,7 e J_2 =2,9Hz); 6,01 (dd, 1H, J_1 =5,7 e J_2 =2,9Hz); 3,26 (sl, 1H); 2,88 (sl, 1H); 2,73 (dd, 1H, J_1 =10,2 e J_2 =3,6Hz); 2,67 (m, 1H); 2,32 (dddd, 1H, J_1 =18,4; J_2 =6,0; J_3 =2,5; J_4 =1,9Hz); 1,97 (m, 1H); 1,93 (ddd, 1H, J_1 =18,4; J_2 =12,0 e J_3 =6,9Hz); 1,85-1,62 (m, 2H); 1,45 (dt, 1H, J_1 =8,3 e J_2 =1,5Hz); 1,31 (dt, 1H, J_1 =8,3 e J_2 =1,5Hz); 0,77 (tdd, 1H, J_1 =12,5 J_2 =10,6 e J_3 =3,5Hz).

RMN ¹³**C** (75 MHz, CDCl₃): δ 215,5 (C=O); 137,6 (CH); 134,9 (CH); 51,6 (CH); 48,3 (CH₂); 46,5 (CH); 45,2 (CH); 41,4 (CH); 39,4 (CH₂); 28,0 (CH₂); 21,8 (CH₂).

IV (filme) v_{max} : 3060; 2932; 2857; 1696; 1607; 1455; 1337; 1236; 1072 cm ⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 162 (M)⁺ (2); 121 (2); 97 (39); 91 (19); 79 (15); 66 (100); 43 (8); 41 (16)

Composto (35): 3-Cloro-ciclo-hex-2-enona

RMN¹H (300 MHz, CDCl₃): δ 6,22 (t, 1H, J=1,5Hz); 2,69 (td, 2H, *J*₁=6,5 e *J*₂=1,5Hz); 2,40 (t, 2H, *J*=6,5Hz); 2,09 (quint, 2H, *J*=6,5Hz).

RMN ¹³**C** (75 MHz, CDCl₃): δ 196,8 (C=O); 158,6 (C); 128,4 (CH); 36,3 (CH₂); 33,9 (CH₂); 22,2 (CH₂).

IV (filme) v_{max}: 3041; 2948; 2887; 1679; 1607; 1455; 1425; 1344; 1289; 1234; 1137; 1026 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 132 [(M + 2)⁺] (10); 130 (34); 104 (32); 102 (100); 67 (75); 65 (9); 39 (43); 28 (11).

> Composto (36): 3-Etóxi-ciclo-hex-2-enona

RMN¹H (300 MHz, CDCl₃): δ 5,34 (s, 1H); 3,91 (q, 2H, *J*=7,0Hz); 2,41 (t, 2H, *J*=6,4Hz); 2,33 (t, 2H, *J*=6,4Hz); 1,98 (quint, 2H, *J*=6,4Hz); 1,37 (t, 3H; *J*=7,0Hz).

RMN ¹³**C** (75 MHz, CDCl₃): δ 199,7 (C=O); 177,9 (C); 102,7 (CH); 65,2 (CH₂); 36,8 (CH₂); 29,1 (CH₂); 21,3 (CH₂); 14,1 (CH₃).

IV (filme) v_{max}: 3039; 2948; 2887; 1646; 1599; 1465; 1221; 1137; 1026 cm⁻¹

EM *m*/*z* (Intensidade relativa)(%): 112 [(M-28)⁺] (28); 84 (81); 69 (23); 55 (35); 42 (100); 39 (37); 27 (37); 15 (9).

Composto (**37**): 3,3'-furano-2,5-di-il-di-ciclo-hexanona

RMN ¹**H** (300 MHz, CDCl₃): δ 5,91 (s, 2H); 3,15 (ddt, 2H, J₁=10,5; J₂=8,6 e J₃=4,8Hz); 2,66 (ddt, 2H, J₁=14,2; J₂=4,8 e J₃=0,9Hz); 2,49 (ddd, 2H; J₁=14,2; J₂=10,5 e J₃=0,9Hz); 2,35 (m, 4H); 2,10 (m, 4H); 1,82 (m, 4H).

RMN ¹³C (75 MHz, CDCl₃): δ 210,1 (C=O); 155,8 (C); 104,8 (CH); 45,5 (CH₂); 41,2 (CH₂); 37,5 (CH); 29,8 (CH₂); 24,3 (CH₂). **IV** (filme) v_{max}: 3041; 3037; 2948; 2872; 1709; 1599; 1557; 1455; 1421; 1221; 1175; 1099; 1018 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 260 (M)⁺(2); 203 (3); 55 (3); 42 (4); 41 (3); 32 (20); 28 (100); 27 (2).

Composto (38): (±)-3-(5-Metil-2-furil)-ciclo-hexanona

RMN ¹**H** (400 MHz, CDCl₃): δ 5,88 (d, 1H; *J*=3,3Hz); 5,85 (d, 1H, *J*=3,3Hz); 3,12 (tt, 1H, *J*₁=10,0 e *J*₂=4,5Hz,); 2,66 (ddt, 1H, *J*₁=14,5; *J*₂=4,5 e *J*₃=1,5Hz); 2,51 (ddd, 1H; *J*₁=14,5; *J*₂=10,0 e *J*₃=1,5Hz); 2,37 (m, 2H); 2,25 (s, 3H); 2,15 (m, 1H); 2,01 (m, 1H); 1,82 (m, 2H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 210,4 (C=O); 155,4 (C); 150,8 (C); 105,8 (CH); 105,0 (CH); 45,7 (CH₂); 41,3 (CH₂); 37,6 (CH); 30,0 (CH₂); 24,4 (CH₂); 13,5 (CH₃).

IV (filme) v_{max}: 3115; 2948; 2872; 1713; 1616; 1569; 1446; 1319; 1221; 1022 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 178 (M)⁺ (6); 121 (15); 108 (10); 77 (4); 55 (6); 42 (13); 32 (28); 28 (100).

Composto (39): (±)-2,2',2"-ciclo-hexano-1,1,3-tri-il-tris-(5metil-furano)

RMN ¹**H** (400 MHz, CDCl₃): δ 6,11 (d, 1H; *J*=3,0Hz); 5,90 (d, 1H, *J*=3,0Hz); 5,84 (d, 1H, *J*=3,0Hz); 5,81 (d, 1H, *J*=3,0Hz); 5,76 (d, 1H,

J=3,0Hz); 5,64 (d, 1H, J=3,0Hz); 2,81 (tt, 1H, J_1 =12,0 e J_2 =3,5Hz); 2,74 (m, 1H); 2,48 (m, 1H); 2,23 (s, 3H); 2,21 (s, 3H); 2,18 (s, 3H); 1,95 (m, 1H); 1,92 (t, 1H, J=12,0Hz); 1,84 (dd, 1H, J_1 =12,0 e J_2 =3,5Hz); 1,73 (m, 1H); 1,55 (ddt, 1H, J_1 =25,0; J_2 =14,0 e J_3 =3,5Hz); 1,37 (dd, 1H, J_1 =25,0; J_2 =12,5Hz).

RMN ¹³**C** (100 MHz, CDCl₃): δ 159,9 (C); 159,0 (C); 155,1 (C); 151,07 (C); 150,7 (C); 150,4 (C); 108,1 (CH); 106,6 (CH); 106,2 (CH); 106,1 (CH); 104,7 (CH); 104,0 (CH); 42,4 (C); 39,1 (CH₂); 33,8 (CH₂); 33,8 (CH); 31,7 (CH₂); 22,7 (CH₂); 14,1 (CH₃); 14,0 (CH₃); 14,0 (CH₃).

IV (filme) v_{max} : 3115; 2948; 2872; 1612; 1557; 1450; 1378; 1217; 1026 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 242 (M-82)⁺ (8); 199 (7); 188 (4); 108 (5); 95 (5); 61 (4); 43 (53); 28 (100).

> Composto (**40**): (±)-3-Metil-3-(5-metil-2-furil)-ciclo-hexanona

RMN ¹**H** (400 MHz, CDCl₃): δ 5,86 (d, 1H; *J*=3,0Hz); 5,81 (d, 1H, *J*=3,0Hz); 2,71 (dt, 1H, *J*₁=14,0 e *J*₂=1,5Hz); 2,31 (m, 3H); 2,23 (s, 3H); 2,20 (m, 1H); 1,86 (m, 1H); 1,73 (m, 1H); 1,64 (m, 1H); 1,30 (m, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 210,8 (C=O); 157,9 (C); 150,8 (C); 105,7 (CH); 105,6 (CH); 51,9 (CH₂); 40,7 (CH₂); 40,4 (C); 35,9 (CH₂); 27,2 (CH₃); 22,1 (CH₂); 13,5 (CH₃).

IV (filme) v_{max} : 3115; 2948; 2857; 1709; 1607; 1557; 1455; 1349; 1221; 1115; 1022 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 192 (M)⁺ (4); 149 (4); 135 (10); 122 (8); 98 (3); 77 (4); 55 (35); 28 (100).

Composto (**41**): (±)-2,2',2"-3-metil-ciclo-hexano-1,1,3-tri-il-tris-(5-metil-furano)

RMN ¹**H** (400 MHz, CDCl₃): δ 5,92 (d, 1H; *J*=3,0Hz); 5,87 (d, 1H, *J*=3,0Hz); 5,75 (m, 2H); 5,72 (d, 1H; *J*=3,0Hz); 5,62 (d, 1H; *J*=3,0Hz); 2,47 (d, 1H, *J*₁=13,5Hz); 2,42 (d, 1H; *J*=13,5Hz); 2,25 (s, 3H); 2,23 (s, 3H); 2,23 (m, 1H); 2,17 (s, 3H); 2,02 (m, 1H); 2,01 (m, 1H); 1,83 (m, 3H); 1,59 (m, 1H); 0,96 (s, 3H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 162,2 (C); 158,3 (C); 156,7 (C); 150,1 (C); 150,0 (C); 149,5 (C); 106,1 (CH); 105,6 (CH); 105,5 (CH); 105,3 (CH); 104,8 (CH); 102,6 (CH); 42,5 (CH₂); 40,5 (C); 36,0 (CH₂); 35,6 (C); 33,4 (CH₂); 25,3 (CH₃); 19,1 (CH₂); 13,6 (CH₃); 13,6 (CH₃); 13,5 (CH₃).

IV (filme) v_{max} : 3100; 2948; 2842; 1612; 1561; 1450; 1319; 1221; 1022 cm⁻¹.

EM *m/z* (Intensidade relativa)(%): 338 (M)⁺ (2); 188 (5); 175 (5); 135 (6); 122 (6); 95 (4); 91 (4); 28 (100).

7.15.Procedimento Geral de Preparação dos Acetatos Enólicos 28, 46, 48, 50, 52 e 54

Procedimento:⁷⁷Para (8,93 mmol) da respectiva diona (representadas na sua forma enólica) foram adicionados anidrido acético (2 mL), piridina (1,5 mL) e DMAP (10 mg) e a mistura resultante foi agitada à temperatura ambiente e sob atmosfera de N₂. Éter etílico (20 mL) foi adicionado, as fases foram separadas e a fase etérea foi lavada com solução aquosa de CuSO₄ 20% (3 x 10 mL), sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₃ (2 x 10 mL), e sol. aquosa saturada de NaHCO₄ anidro o solvente foi evaporado com vácuo.

28, 40, 48, 30, 32 e 34.									
β -dicetona	Tempo (h)	Rend. (%)	Produto						
27	2	72	28						
45	6	65	46						
47	6	60	48						
49	3	70	50						
51	3	68	52						
53	2	72	54						

Tabela 180 - Dados das reações de preparação dos acetatos enólicos **28**, **46**, **48**, **50**, **52** e **54**.

Dados Espectroscópicos:

Composto (46):5,5-Dimetil-3-oxo-ciclo-hex-1-enil-acetato

RMN ¹**H** (400 MHz, CDCl₃): δ 5,91 (t, 1H, *J*=1,3Hz); 2,42 (s, 2H); 2,27 (s, 2H); 2,21 (s, 3H); 1,10 (s, 6H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 199,6 (C=O); 168,1 (C); 167,5 (C=O); 116,5 (CH); 50,8 (CH₂); 42,2 (CH₂); 33,2 (C); 28,1 (2 x CH₃); 21,3 (CH₃).

IV (filme) v_{max} : 2963; 2857; 1773; 1671; 1624; 1430; 1361; 1200; 1120; 1009 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 182 (M)⁺(5); 140 (11); 126 (6); 98 (12); 84 (63); 69 (21); 55 (12); 43 (100); 41 (14); 27 (11).

Composto (48): (±)-3-Oxo-5-fenil-ciclo-hex-1-enil-acetato

RMN ¹**H** (300 MHz, CDCl₃): δ 7,35 (m, 2H); 7,26 (m, 3H); 6,01 (d, 1H, *J*=2,1Hz); 3,43 (tt, 1H, *J*₁=11,0 e *J*₂=5,0Hz); 2,87 (ddd, 1H, *J*₁=17,0; *J*₂=5,0 e *J*₃=2,1Hz); 2,67 (dd, 1H, *J*₁=16,0 e *J*₂=5,0Hz); 2,66 (dd, 1H, *J*₁=17,0 e *J*₂=11,0Hz); 2,63 (dd, 1H, *J*₁=16,0 e *J*₂=11,0Hz); 2,21 (s, 3H).

RMN ¹³**C** (75 MHz, CDCl₃): δ 199,2 (C=O); 169,3 (C); 167,8 (C=O); 142,5 (C); 129,3 (2 x CH); 127,7 (CH); 127,1 (2 x CH); 117,7 (CH); 44,2 (CH₂); 40,0 (CH); 36,5 (CH₂); 21,7 (CH₃).

IV (filme) v_{max}: 3060; 2963; 2897; 1750; 1645; 1604; 1498; 1346; 1189; 1126 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 230 (M)⁺ (7); 188 (25); 131 (4); 104 (17); 84 (43); 69 (15); 43 (100); 15 (8).

Composto (50): 2-Metil-3-oxo-ciclo-hex-1-enil-acetato

RMN ¹**H** (400 MHz, CDCl₃): δ 2,54 (tq, 2H, *J*₁=6,0 e *J*₂=2,0Hz); 2,45 (t, 2H, *J*=6,0Hz); 2,24 (s, 3H); 2,02 (quint, 2H, *J*=6,0Hz); 1,66 (t, 3H, *J*=2,0Hz).

RMN ¹³**C** (100 MHz, CDCl₃): δ 199,4 (C=O); 167,4 (C); 164,3 (C=O); 124,8 (C); 37,0 (CH₂); 28,6 (CH₂); 20,9 (CH₂); 20,8 (CH₃); 8,3 (CH₃).

IV (filme) v_{max}: 2954; 2877; 1765; 1674; 1431; 1350; 1081; 1042 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 168 (M)⁺(3); 126 (32); 98 (34); 84 (15); 70 (17); 55 (10); 43 (100); 27 (23).

Composto (52): 3-Oxo-ciclo-pent-1-enil-acetato

RMN ¹**H** (400 MHz, CDCl₃): δ 2,84 (m, 2H); 2,52 (m, 2H); 2,30 (s, 3H); 1,63 (t, 3H, *J*=2,0Hz).

RMN ¹³**C** (100 MHz, CDCl₃): δ 206,2 (C=O); 175,9 (C=O); 166,6 (C); 126,2 (C); 34,3 (CH₂); 27,1 (CH₂); 21,1 (CH₃); 6,6 (CH₃).

IV (filme) v_{max}: 2927; 2864; 1777; 1667; 1443; 1327; 1200; 1179; 1103 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 113 [(M-41)⁺] (7); 112 (100); 111 (12); 93 (55); 70 (12); 56 (37); 55 (56); 43 (50); 27 (36).

Composto (**54**): 4,4-Dimetil-3-oxo-ciclo-hex-1-enil-acetato

RMN ¹**H** (400 MHz, CDCl₃): δ 5,79 (s, 1H); 2,56 (t, 2H, *J*=6,0Hz); 2,21 (s, 3H); 1,87 (t, 2H, *J*=6,0Hz); 1,13 (s, 6Hz).

RMN ¹³**C** (100 MHz, CDCl₃): δ 204,2 (C=O); 167,8 (C); 167,5 (C=O); 115,9 (CH); 40,6 (C); 34,8 (CH₂); 25,8 (CH₂); 24,0 (2 x CH₃); 21,2 (CH₃).

271

7.16.Procedimento Geral para as Reações entre as Ciclo-Enonas
27, 28 e 45- 54 com NbCl₅.

Procedimento: Para uma solução de NbCl₅ (0,5; 1,0* e 2,0* mmol) em 1,5 mL de solvente anidro foi adicionada uma solução de enona (1,0 mmol) em 4,0 mL de solvente anidro. O tempo de reação variou de 100 a 420 minutos. Em seguida adicionou-se solução aquosa de ácido cítrico 10% (2,0 mL). A mistura foi diluída com água (5 mL) e solvente (10 mL). As fases foram separadas e a fase orgânica foi lavada com solução aquosa de NaHCO₃ 5% (3 x 10 mL) e com solução aquosa saturada de NaCl (2 x 10 mL), secou-se sob MgSO₄ anidro, e em seguida evaporou-se o solvente a pressão reduzida. Os produtos foram purificados por cromatografia de coluna em sílicagel, eluindo-se com hexano:acetato de etila, 7 : 3.

 \ast Estas quantidades de NbCl5 foram usadas apenas para as ciclo-enonas 45 e 47.

Ciclo-	NbCl ₅	Conversão	Solvente	Тетро	Rend.	Produtos	
enona	(eq.)	ciclo-		(min.)	Bruto	, ·	∕₀c
		enona, %		· ·	b %		
						35	36
27	0,5	100	Et_2O	20	57	100	0
27	0,5	100	CH_2Cl_2	30	68	100	0
27	0,5	100	EtOAc	30	60	5	95
28	0,5	100	Et_2O	20	68	100	0
28	0,5	100	CH_2Cl_2	20	80	100	0
28	0,5	100	EtOAc	30	83	20	80
						55	56
45	0,5ª	15	Et_2O	420	60	100	0
45	0,5ª	25	CH_2Cl_2	420	68	100	0
45	0,5ª	50	EtOAc	420	60	0	100
45	2,0	100	Et_2O	360	60	100	0
45	2,0	100	CH_2Cl_2	300	67	100	0
45	1,0	100	EtOAc	300	65	0	100
46	0,5	100	Et_2O	420	69	100	0
46	0,5	100	CH_2Cl_2	420	75	100	0
46	0,5	100	EtOAc	300	80	0	100
						57	58
47	0,5ª	10	Et_2O	420	57	100	0
47	0,5ª	20	CH_2Cl_2	420	65	100	0

Tabela 181 - Resultados das reações das ciclo-enonas **27, 28, 45-54** com NbCl₅ à temperatura ambiente.

Parte Ex	rperimental						274
47	0,5ª	50	EtOAc	420	65	0	100
47	2,0	100	Et_2O	360	60	100	0
47	2,0	100	CH_2Cl_2	300	60	100	0
47	1,0	100	EtOAc	300	63	0	100
48	0,5	100	Et_2O	420	68	100	0
48	0,5	100	CH_2Cl_2	420	70	100	0
48	0,5	100	EtOAc	300	78	0	100
						5	9
49	0,5	100	Et_2O	200	60	10	00
49	0,5	100	CH_2Cl_2	200	60	10	00
49	0,5	100	EtOAc	240	65	10	00
50	0,5	100	Et_2O	100	70	10	00
50	0,5	100	CH_2Cl_2	100	75	10)0
50	0,5	100	EtOAc	120	79	100	
						6	0
51	0,5	100	Et_2O	200	65	10	00
51	0,5	100	CH_2Cl_2	200	73	10	00
51	0,5	100	EtOAc	240	71	10	00
52	0,5	100	Et_2O	100	73	10	00
52	0,5	100	CH_2Cl_2	100	78	10	00
52	0,5	100	EtOAc	120	80	10	00
						61	62
53	0,5	100	Et_2O	40	65	100	0
53	0,5	100	CH_2Cl_2	40	68	100	0
53	0,5	100	EtOAc	50	70	20	80
54	0,5	100	Et_2O	30	68	100	0
54	0,5	100	CH_2Cl_2	30	68	100	0
54	0,5	100	EtOAc	40	80	30	70

^a A reação foi interrompida neste ponto porque a conversão de material de partida em produtos estava já muito lenta.

^b Nos casos em que o material de partida foi parcialmente recuperado, o rendimento dos produtos foi calculado considerando apenas a massa de material de partida efetivamente transformado.

 $^{\rm c}$ Proporção determinada pela integração dos sinais de RMN $^1{\rm H}$
Dados Espectroscópicos:

Composto (55): 3-Cloro-5,5-dimetil-ciclo-hex-2-enona

RMN¹H (400 MHz, CDCl₃): δ 6,22 (t, 1H, *J*=1,5Hz); 2,56 (s, 2H); 2,01 (s, 2H); 1,10 (s, 6H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 197,0 (C=O); 156,8 (C); 127,3 (CH); 50,4 (CH₂); 47,8 (CH₂); 34,0 (C); 28,1 (CH₃).

IV (filme) v_{max}: 2963; 2872; 1679; 1612; 1463; 1374; 1340; 1272; 1238; 1145; 1014 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 160 [(M+2)⁺] (7); 158 (M)⁺ (21); 104 (28); 102 (100); 77 (14); 67 (43); 41 (15); 39 (37); 27 (10).

Composto (56): 3-Etóxi-5,5-dimetil-ciclo-hex-2-enona

RMN ¹**H** (400 MHz, CDCl₃): δ 5,34 (s, 1H); 3,90 (q, 2H, *J*=7,0Hz); 2,27 (s, 2H); 2,20 (s, 3H); 1,36 (t, 3H, *J*=7,0Hz); 1,07 (s, 6H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 199,6 (C=O); 176,2 (C); 101,5 (CH); 64,2 (CH₂); 50,8 (CH₂); 43,0 (CH₂); 32,5 (C); 28,3 (CH₃); 14,1 (CH₃).

IV (filme) v_{max}: 2963; 2872; 1658; 1603; 1472; 1378; 1361; 1221; 1162; 1145; 1034 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 168 (M)⁺ (21); 112 (46); 84 (92); 69 (94); 68 (62); 55 (30); 43 (60); 29 (99); 27 (100).

Composto (57): (±)-3-Cloro-5-fenil-ciclo-hex-2-enona

RMN ¹**H** (300 MHz, CDCl₃): δ 7,35 (m, 2H); 7,25 (m, 3H); 6,31 (s, 1H); 3,45 (dddd, 1H, J_1 =12,0; J_2 =8,7; J_3 =7,2 e J_4 =5,0Hz); 2,92 (m, 2H); 2,71 (dd, 1H, J_1 =16,4 e J_2 =5,0Hz); 2,62 (dd, 1H, J_1 =16,4 e J_2 =12,0Hz).

RMN ¹³**C** (75 MHz, CDCl₃): δ 196,1 (C=O); 157,5 (C); 141,6 (C); 128,9 (2 x CH); 128,4 (CH); 128,3 (CH); 126,6 (2 x CH); 43,3 (CH₂); 41,6 (CH₂); 40,4 (CH).

IV (filme) v_{max}: 3078; 3041; 2959; 2898; 1684; 1612; 1496; 1336; 1234; 1038cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 208 [(M+2)⁺] (4); 206 (M)⁺ (12); 164 (11); 128 (7); 104 (100); 70 (18); 51 (18); 39 (35).

Composto (58): (±)-3-Etóxi-5-fenil-ciclo-hex-2-enona

RMN ¹**H** (400 MHz, CDCl₃): δ 7,34 (m, 2H); 7,25 (m, 3H); 5,43 (d, 1H, *J*=1,3Hz); 3,95 (dq, 1H, *J*₁=10,0; *J*₂=7,0Hz); 3,92 (dq, 1H, *J*₁=10,0; *J*₂=7,0Hz); 3,35 (ddt, 1H, *J*₁=12,6; *J*₂=10,6 e *J*₃=5,3Hz); 2,67 (ddd, 1H, *J*₁=16,5; *J*₂=10,6 e *J*₃=1,3Hz); 2,65 (ddd, 1H, *J*₁=16,5; *J*₂=5,3 e *J*₃=1,3Hz); 2,61 (ddd, 1H, *J*₁=16,5; *J*₂=5,3 e *J*₃=1,3Hz); 2,55 (dd, 1H, *J*₁=16,5 e *J*₂=12,6 Hz); 1,36 (t, 3H, J=7,0Hz).

RMN ¹³**C** (100 MHz, CDCl₃): δ 199,3 (C=O); 177,4 (C); 143,1 (C); 129,2 (2 x CH); 127,4 (CH); 127,1 (2 x CH); 102,9 (CH); 64,9 (CH₂); 44,2 (CH₂); 39,7 (CH); 37,1 (CH₂); 14,5 (CH₃).

IV (filme) v_{max}: 3062; 3028; 2982; 2940; 2899; 1655; 1602; 1379; 1349; 1211; 1139; 1029 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 216 (M)⁺ (7); 112 (16); 86 (59); 84 (100); 69 (16); 51 (13); 47 (43); 35 (62).

Composto (59): 3-Cloro-2-metil-ciclo-hex-2-enona

RMN ¹**H** (400 MHz, CDCl₃): δ 2,74 (tq, 2H, *J*₁=6,0 e *J*₂=2,0 Hz); 2,45 (t, 2H, *J*=6,0Hz); 2,04 (quint, 2H, *J*=6,0Hz); 1,91 (t, 3H, *J*=2,0Hz).

RMN ¹³**C** (100 MHz, CDCl₃): δ 195,6 (C=O); 152,4 (C); 132,5 (C); 36,0 (CH₂); 33,8 (CH₂); 20,9 (CH₂); 11,3 (CH₃).

IV (filme) v_{max} : 2952; 2879; 2870; 1679; 1627; 1431; 1375; 1290; 1192; 1040 cm⁻¹.

EM *m*/*z* (Intensidade relativa)(%): 146 [(M + 2)⁺] (16); 144 (M)⁺ (48); 118 (39); 116 (100); 88 (19); 81 (64); 53 (57); 51 (22); 27 (24).

> Composto (60): 3-Cloro-2-metil-ciclo-hex-2-enona

RMN ¹**H** (400 MHz, CDCl₃): δ 2,81 (m, 2H); 2,55 (m, 2H); 1,78 (t, 3H, *J*=2,0Hz).

RMN ¹³**C** (100 MHz, CDCl₃): δ 204,8 (C=O); 164,0 (C); 138,0 (C); 35,0 (CH₂); 32,8 (CH₂); 8,3 (CH₃).

IV (filme)v_{max}:2925; 2859; 1643; 1441; 1378; 1295; 1071; 1007 cm⁻¹.

EM m/z (Intensidade relativa)(%): 132 [(M + 2)⁺] (14); 130 (M)⁺ (42); 104 (4); 95 (16); 67 (100); 43 (33); 39 (62); 27 (32).

Composto (61): 3-Cloro-6,6-dimetil-ciclo-hex-2-enona

RMN ¹**H** (400 MHz, CDCl₃): δ 6,12 (t, 1H, *J*=1,5Hz); 2,70 (td, 2H, *J*₁=6,0 e *J*₂=1,5Hz); 1,90 (t, 2H, *J*=6,0Hz); 1,12 (s, 6H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 200,1 (C=O); 155,6 (C); 126,0 (CH); 39,6 (C); 35,2 (CH₂); 30,8 (CH₂); 23,8 (2 x CH₃).

> Composto (62): 3-Etóxi-6,6-dimetil-ciclo-hex-2-enona

RMN ¹**H** (400 MHz, CDCl₃): δ 5,24 (s, 1H); 3,89 (q, 2H, *J*=7,0Hz); 2,43 (t, 2H, *J*=6,5Hz); 1,80 (t, 2H, *J*=6,5Hz); 1,36 (t, 3H, *J*=7,0Hz) 1,11 (s, 6H).

RMN ¹³**C** (100 MHz, CDCl₃): δ 204,9 (C=O); 176,2 (C); 101,3 (CH); 64,5 (CH₂); 40,5 (C); 35,4 (CH₂); 26,6 (CH₂); 24,9 (2 x CH₃); 14,5 (CH₃).

8. Referências Bibliográficas

8. REFERÊNCIAS BIBLIOGRÁFICAS

- Payton, P. H. in Kirk Othmer Encyclopedia of Chemical Technology Vol. 15 (Wiley-Interscience, New York, 3rd ed., 1981) pp 820-840; em especial, pg 827.
- For a review on niobium compounds, veja: Nowak, I.; Ziolek, M. Chem. Rev. 1999, 99, 3603-3624.
- 3. Hirao, T. Chem. Rev. **1997**, 97, 2707-2724.
- 4. Veja, por exemplo: a) K. Tanabe e S. Okazaki, "Various Reactions Catalyzed by Niobium Compounds and Materials", *Applied Catalysis A: General* 133, 191-218 (1995); b) C. L. T. da Silva, "Síntese e Caracterização de Óxido de Nióbio Ancorado Sobre Alumina e Avaliação de suas Propriedades como Suporte de Catalisadores de HDT", Tese de Mestrado, UFRJ, Rio de Janeiro, 1997 (orientador: Prof. Dr. Arnaldo C. Faro Jr.).
- Furstner, A.; Hupperts, A.; Ptock, A.; Janssen, E. J. Org. Chem.
 1994, 59, 5215-5229.
- Szymoniak, J.; Besançon, J.; Moise, C. Tetrahedron 1992, 48, 3867-3876.
- Szymoniak, J.; Besançon, J.; Moise, C. Tetrahedron 1994, 50, 2841-2848.
- 8. Sato, M.; Oshima, K. Chem. Lett. **1992**, *5*, 157-160.
- 9. Kauffmann, T.; Kallweit, H. Chem. Ber. **1992**, 125, 149-151.
- Roskamp, E. J.; Pedersen, S. F. J. A. Chem. Soc. 1987, 109, 6551-6553.
- 11. Roskamp, E. J.; Pedersen, S. F.; Dragovich, P. S.; Hartung, J. B. J. Org. Chem. 1989, 54, 4736-4737.
- Hartung, J. B.; Pedersen, S. F. J. Am. Chem. Soc. 1989, 111, 5468-5469.
- 13. Kataoka, Y.; Takai, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. **1990**, 31, 365-368.

- 14. Kauffmann, T.; Abel, T.; Neiteler, G.; Schreer, M. Tetrahedron Lett. **1990**, *31*, 503-506.
- Hashimoto, T.; Maeta, H.; Matsumoto, T.; Morooka, M.; Ohba,
 S.; Suzuki, K. Synlett. 1992, 4, 340-342.
- 16. Maeta, H.; Nagasawa, T.; Handa, Y.; Takei, T. *Tetrahedron Lett.* **1995**, *36*, 899-902.
- Azevedo, N. R.; Andrade, C. K. Z. Tetrahedron Lett. 2001, 42, 6473-6476.
- Andrade, C. K. Z.; Oliveira, G.; Azevedo, N. R. Synthesis 2002, 928-936.
- 19. Andrade, C. K. Z.; Matos, R. A. F. Synllet 2003, 8, 1189-1191.
- Yamamoto, M.; Nakazawa, M.; Kishikawa, K.; Kohmoto, S.
 Chem. Comm. **1996**, 20, 2353-2354.
- 21. Constantino, M. G. Química orgânica 1 (apostila), 2004.
- 22. Smith, M. B. Organic synthesis, 2ed., McGrawHill, New York,2002.
- 23. Hartshorn, M. P.; Kirk, D. N.; Wallis, A. F. A. J. Chem. Soc.
 1964, 5494.
- 24. Lewis, J. B.; Hedrick, G. W. J. Org. Chem. 1965, 30, 4271.
- 25. Kergomard, A.; Philibert-Bigou, S.; Geneix, M. T. French Patent
 N° 1,183,849 (July 15,1959); [*Chem. Abs.*, 55, 27404 (1961)].
- 26. Constantino, M. G.; Losco, P.; Catellano, E. E. J. Org. Chem.
 1989, 54, 681;
- 27. Constantino, M. G.; Donate, P. M.; Frederico, D.; Carvalho, T. V.; Cardoso, L. E. Synth. Commun. 2000, 30, 3327.
- 28. Lacerda Jr., V. Tese de Mestrado, FFCLRP-USP, **2000**.
- 29. Organic Syntheses, CV 6, 948.
- Donnelly, J. A.; Keegan, J. R.; Quigley, K. Tetrahedron 1980, 36, 1671.

- 31. Lacerda Jr., V.; Invernize, P. R.; da Silva, G. V. J.; Constantino,
 M. G.; 10th BMOS-Brazilian Meeting on Organic Synthesis,
 Abstracts, PS 59, 2003.
- 32. Invernize, P. R.; Lacerda Jr., V.; Constantino, M. G. 11°
 SIICUSP-Simpósio Internacional de Iniciação Científica da USP,
 2003.
- 33. Lacerda Jr., V.; Constantino, M. G.; da Silva, G. V. J.; Invernize, P. R. 26^a Reunião Anual da Sociedade Brasileira de Química-SBQ, Resumos, QO-015, 2003.
- 34. Braz, V. S.; Lacerda Jr., V.; Constantino, M. G. 10° Simpósio Internacional de Iniciação Científica da USP-SIICUSP, Resumos, 2002.
- 35. Lacerda Jr., V.; Constantino, M. G. XLII Congresso Brasileiro de Química-ABQ, **Resumos**, pg. 410, **2002**.
- Lacerda Jr., V.; Aragão, V.; Constantino, M. G.; Braz, V. S. 25^a Reunião Anual da Sociedade Brasileira de Química-SBQ, Resumos, QO-60, 2002.
- 37. Constantino, M. G.; Lacerda Jr., V.; Aragão, V. Molecules 2001,
 6, 770-776.
- Aragão, V.; Lacerda Jr., V.; Constantino, M. G. 9th Brazilian Meeting on Organic Synthesis, Abstracts, PS 60, 2001.
- 39. Aragão V.; Caramori, F. G.; Souza De, A. X.; Lacerda Jr., V.; Constantino, M. G.; Donate, P. M. 23^a Reunião Anual da Sociedade Brasileira de Química-SBQ, Resumos, QO-021, 2000.
- Caramori, F. G.; Aragão V.; Lacerda Jr., V.; Constantino, M. G.; Donate, P. M. XXXIX Congresso Brasileiro de Química-ABQ, Resumos, QO-22, 1999.
- 41. Constantino, M. G.; Lacerda Jr., V.; Da Silva, G. V. J. Magn.
 Reson. Chem. 2003, 41, 641-643.

- 42. Garret, C. E.; Fu, G. C. J. Org. Chem. 1997, 62, 4534-4535.
- 43. Sarangi, C; Das, N. B.; Nanda, B.; Nayak, A.; Sharma, R. P. J. Chem. Research (S) **1997**, 18.
- 44. PCMODEL, version 7.0, Serena Software, P. O. Box 3076, Bloomington, IN 474-23076.
- 45. Chapuis, C.; Brauchli, R. Helv. Chim. Acta **1992**, 75, 1527-1546.
- 46. Arndt,F.; Kallner, G. Ber. 57B, 202 (1924); C. A. 18, 2167 (1924).
- 47. Constantino, M. G.; Lacerda Jr., V.; Da Silva, G. V. J. J. *Heterocyclic Chem.* **2003**, 40, 369-371.
- 48. Howarth, J.; Gillespie, K. Tetrahedron Lett. 1996, 37, 6011-6012.
- 49. Howarth, J.; Gillespie, K. Molecules 2000, 5, 993-997.
- 50. da Silva Filho, L. C.; Lacerda Jr., V.; Heleno, V. C. G.; Lopes, J. L. C.; Constantino, M. G.; da Silva, G. V. J. 7th Latin American Conference on Physical Organic Chemistry, Abstracts, Pg. 79, 2003.
- 51. da Silva Filho, L. C.; Lacerda Jr., V.; da Silva, G. V. J.;
 Constantino, M. G. 10th BMOS-Brazilian Meeting on Organic Synthesis, Abstracts, PS 58, 2003.
- 52. da Silva Filho, L. C.; Lacerda Jr., V.; Constantino, M. G.; da Silva, G. V. J. 26^a Reunião Anual da Sociedade Brasileira de Química-SBQ, Resumos, QO-013, 2003.
- Constantino, M. G.; Lacerda Jr., V.; da Silva, G. V. J.
 Molecules 2002, 7, 456-465.
- 54. Lacerda Jr., V.; Constantino, M. G. 9th Brazilian Meeting on Organic Synthesis, Abstracts, PS 59, **2001**.
- Algell, E. C.; Fringuelli, F.; Guo, M.; Minuti, L.; Taticchi, A.;
 Wenkert, E. J. Org. Chem. **1988**, 53, 4325.

- 56. Ferraz, H. M. C.; Payret-Arrúa, M. E. Química Nova **1998**, 21, 597.
- 57. Alder, K; Stein, G. Angew. Chem. 1937, 50, 510.
- 58. Bauld, N. L.; Yang, J. Organic Letters 1999, 1, 773-774.
- 59. Leach, A. G.; Goldstein, E.; Houk, K. N. J. Am. Chem. Soc.
 2003, 125, 8331.
- Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. J. Org. Chem. 2003, 68, 3884-3890.
- Galembeck, S. E.; Caromori, G. F. Química Nova 2003, 26, 957-959.
- 62. Bachrach, S. M.; Jiang, S. J. Org. Chem. 1999, 64, 8248-8255.
- 63. Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1976, 41, 636-643.
- 64. Wender, P. A.; White, A. W. J. Am. Chem. Soc. **1988**, 110, 2218-2223.
- 65. Lacerda Jr., V.; Oliveira, K. T.; Silva Filho, L. C.; Constantino,
 M. G.; Galembeck, S. E. XII SBQT-Simpósio Brasileiro de Química Teórica, Resumos, 2003.
- 66. Constantino, M. G.; Lacerda Jr., V.; Da Silva, L. C. F.; Da Silva,
 G. V. J. "Niobium (V) chloride mediated preparation of β-chloroα,β-unsaturated ketones", **2003**, em fase de preparação.
- Lacerda Jr., V.; da Silva Filho, L. C.; da Silva, G. V. J.;
 Constantino, M. G. 10th BMOS-Brazilian Meeting on Organic Synthesis, Abstracts, PS 57, 2003.
- Lacerda Jr., V.; Constantino, M. G.; da Silva, G. V. J. 26^a Reunião Anual da Sociedade Brasileira de Química-SBQ, Resumos, QO-014, 2003.
- Lacerda Jr., V.; Constantino, M. G.; Invernize, P. R 25^a Reunião Anual da Sociedade Brasileira de Química-SBQ, Resumos, QO-59, 2002.

- 70. Braz, V. S.; Lacerda Jr., V.; Beatriz, A.; Constantino, M. G 24^a Reunião Anual da Sociedade Brasileira de Química-SBQ, Resumos, QO-29, 2001.
- 71. Silverstein, R. M.; Bassler, G. C.; Morril, T. C. Identificação Espectrométrica de Compostos Orgânicos. 5ª edição, Guanabara Koogan: Rio de Janeiro, **1994**.
- 72. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Jr. Introduction to Spectroscopy. 2nd edition. Saunders College publishing: Orlando, USA, 1996.
- 73. Gottlieb, O. R. Introdução a Espectroscopia de Ressonância Magnética Protônica. UFRRJ: Rio de Janeiro, **1968**.
- 74. Kalinowski, H.; Berger, S.; Braun, S. *Carbon-13 NMR* Spectroscopy. John Wiley & Sons: New York, **1991**.
- Wehrli, F. W.; Marchand, A. P.; Wehrli, S. Interpretation of Carbon-13 NMR Spectra. 2nd edition. Jonh Wiley & Sons: New York, 1988.
- Levy, G. C.; Lichter, R. L.; Nelson, G. L. Carbon-13 Nuclear Magnetic Resonance Spectroscopy. 2nd edition. John Wiley & Sons: New York, **1980**.
- 77. MsAnalyser Programa de computador para Windows-95/98, desenvolvido em nosso laboratório para auxiliar na análise de espectro de massas. Consultar: <u>http://artemis.ffclrp.usp.br</u>
- 78. FOMS Programa de computador para Windows-95/98, desenvolvido em nosso laboratório para auxiliar na análise de espectros de RMN ¹H. Consultar: <u>http://artemis.ffclrp.usp.br</u>
- 79. Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R.; Purification of Laboratory Chemicals, 2^a edição, Pergamon Press Ltd: Oxford, 1980.
- 80. Beatriz, A. Tese de Doutoramento 2001, FFCLRP-USP.
- 81. Natelson, S.; Gottfried, S. P. J. Am. Chem. Soc. 1939, 61, 1001.